

So f tware

I D C D O C U M E N T A T I O N

Distributed
Application

Control
System

(DACS)

Approved for public release;
distribution unlimited

 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

Notice

This document was published June 2001 by the Monitoring Systems Operation of Science Applications Inter-
national Corporation (SAIC) as part of the International Data Centre (IDC) Documentation. Every effort was
made to ensure that the information in this document was accurate at the time of publication. However, infor-
mation is subject to change.

Contributors

Lance Al-Rawi, Science Applications International Corporation
Warren Fox, Science Applications International Corporation
Jan Wüster, Science Applications International Corporation

Trademarks

BEA TUXEDO is a registered trademark of BEA Systems, Inc.
Isis is a trademark of Isis Distributed Systems.
Motif 2.1 is a registered trademark of The Open Group.
ORACLE is a registered trademark of Oracle Corporation.
SAIC is a trademark of Science Applications International Corporation.
Solaris is a registered trademark of Sun Microsystems.
SPARC is a registered trademark of Sun Microsystems.
SQL*Plus is a registered trademark of Oracle Corporation.
Sun is a registered trademark of Sun Microsystems.
Syntax is a Postscript font.
UltraSPARC is a registered trademark of Sun Microsystems.
UNIX is a registered trademark of UNIX System Labs, Inc.
X Window System is a registered trademark of The Open Group.

Ordering Information

The ordering number for this document is SAIC-01/3001.

This document is cited within other IDC documents as [IDC7.3.1].

Notice Page

D i s t r ibu ted App l i ca t ion Cont ro l Sys tem
(DACS)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0

I D C D O C U M E N T A T I O N

CONTENTS
About this Document i

■ PURPOSE ii

■ SCOPE ii

■ AUDIENCE iii

■ RELATED INFORMATION iii

■ USING THIS DOCUMENT iii

Conventions v

Chapter 1: Overview 1

■ INTRODUCTION 2

■ FUNCTIONALITY 7

■ IDENTIFICATION 9

■ STATUS OF DEVELOPMENT 10

■ BACKGROUND AND HISTORY 10

■ OPERATING ENVIRONMENT 11

Hardware 11

Commercial-Off-The-Shelf Software 11

Chapter 2: Architectural Design 13

■ CONCEPTUAL DESIGN 14

■ DESIGN DECISIONS 18

Programming Language 18

Global Libraries 18

Database 19

Interprocess Communication (IPC) 19

Filesystem 20

UNIX Mail 20
i o n C o n t r o l S y s t e m (D A C S)

0 1

I D C D O C U M E N T A T I O N

FTP 20

Web 20

Design Model 21

Distribution and Backup Concept 23

Pipelines 25

Database Schema Overview 27

■ FUNCTIONAL DESCRIPTION 28

Distributed Process Monitoring, Reliable Queueing, and Transactions 28

Data Monitoring 30

System Scheduling 30

Pipeline Processing 31

Workflow Monitoring 31

Automatic Processing Utilities 32

Operator Console 32

Interactive Processing 32

■ INTERFACE DESIGN 34

Interface with Other IDC Systems 34

Interface with External Users 35

Interface with Operators 35

Chapter 3: Tuxedo Components and Concepts 37

■ PROCESSING UNITS 38

■ TUXEDO COMPONENTS OF DACS 38

Listener Daemons (tlisten, tagent) 38

Administrative Servers 42

Application Servers 43

IPC Resources 45

Special Files 45

Utility Programs 46

Chapter 4: Detai led Design 47

■ DATA FLOW MODEL 48

■ PROCESSING UNITS 54

Data Monitor Servers 54
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

 D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0

I D C D O C U M E N T A T I O N

scheduler/schedclient 77

tuxshell 83

dbserver, interval_router, and recycler_server 89

WorkFlow, SendMessage, and ProcessInterval 93

libipc, dman, and birdie 100

tuxpad, operate_admin, schedule_it, and msg_window 110

■ DATABASE DESCRIPTION 119

Database Design 119

Database Schema 122

Chapter 5: Requirements 125

■ INTRODUCTION 126

■ GENERAL REQUIREMENTS 126

■ FUNCTIONAL REQUIREMENTS 128

Availability Management 128

Message Passing 129

Workflow Management 131

System Monitoring 133

Reliability 134

■ CSCI EXTERNAL INTERFACE REQUIREMENTS 137

■ CSCI INTERNAL DATA REQUIREMENTS 142

■ SYSTEM REQUIREMENTS 142

■ REQUIREMENTS TRACEABILITY 144

References 175

Glossary G1

Index I1
i o n C o n t r o l S y s t e m (D A C S)

0 1

D i s t r ibu ted App l i ca t ion Cont ro l Sys tem
(DACS)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0

I D C D O C U M E N T A T I O N

FIGURES
FIGURE 1. IDC SOFTWARE CONFIGURATION HIERARCHY 3

FIGURE 2. RELATIONSHIP OF DACS TO OTHER SUBSYSTEMS OF IDC SOFTWARE 4

FIGURE 3. DACS APPLICATION FOR AUTOMATIC PROCESSING 5

FIGURE 4. DACS APPLICATION FOR INTERACTIVE PROCESSING 7

FIGURE 5. DACS AS MIDDLEWARE 8

FIGURE 6. CONCEPTUAL DATA FLOW OF THE DACS FOR AUTOMATIC PROCESSING 15

FIGURE 7. CONCEPTUAL DATA FLOW OF DACS FOR INTERACTIVE PROCESSING 17

FIGURE 8. PROCESSING REQUESTS FROM MESSAGE QUEUE 21

FIGURE 9. TRANSACTION IN DETAIL 22

FIGURE 10. FORWARDING AGENT 23

FIGURE 11. CONSTRUCTION OF A PIPELINE 26

FIGURE 12. DATA FLOW OF THE DACS FOR AUTOMATIC PROCESSING 29

FIGURE 13. DATA FLOW OF THE DACS FOR INTERACTIVE PROCESSING 34

FIGURE 14. DATA FLOW OF DACS CSCS FOR AUTOMATIC PROCESSING 50

FIGURE 15. CONTROL AND DATA FLOW OF DACS CSCS FOR INTERACTIVE PROCESSING 53

FIGURE 16. DATA MONITOR CONTEXT 55

FIGURE 17. DATA MONITOR ACKNOWLEDGEMENT TO SCHEDULING SYSTEM 56

FIGURE 18. TIS_SERVER DATA FLOW 58

FIGURE 19. CURRENT DATA AND SKIPPED INTERVAL CHECKS 60

FIGURE 20. TISEG_SERVER DATA FLOW 62

FIGURE 21. TICRON_SERVER DATA FLOW 64

FIGURE 22. TIN_SERVER DATA FLOW 66

FIGURE 23. WAVEGET_SERVER DATA FLOW 68

FIGURE 24. SCHEDULING SYSTEM DATA FLOW 79

FIGURE 25. TUXSHELL DATA FLOW 85
i o n C o n t r o l S y s t e m (D A C S)

0 1

I D C D O C U M E N T A T I O N
FIGURE 26. DBSERVER DATA FLOW 89

FIGURE 27. MONITORING UTILITY WORKFLOW 95

FIGURE 28. WORKFLOW DATA FLOW 97

FIGURE 29. TUXPAD DESIGN 112

FIGURE 30. QINFO DESIGN 114

FIGURE 31. SCHEDULE_IT DESIGN 115

FIGURE 32. ENTITY RELATIONSHIP OF SAIC DACS CSCS 121

FIGURE 33. DATA ARRIVAL EXAMPLE 139
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

 D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

Dis t r ibu ted App l i ca t ion Cont ro l Sys tem
(DACS)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0

I D C D O C U M E N T A T I O N

TABLES
TABLE I: DATA FLOW SYMBOLS v

TABLE II: ENTITY-RELATIONSHIP SYMBOLS vi

TABLE III: TYPOGRAPHICAL CONVENTIONS vii

TABLE IV: TECHNICAL TERMS vii

TABLE 1: DATABASE TABLES USED BY DACS 27

TABLE 2: MAP OF TUXEDO COMPONENTS TO SAIC DACS COMPONENTS 39

TABLE 3: DACS/LIBIPC INTERVAL MESSAGE DEFINITION 103

TABLE 4: LIBIPC API 106

TABLE 5: DATABASE USAGE BY DACS 122

TABLE 6: DACS OPERATIONAL MODES 127

TABLE 7: FAILURE MODEL 136

TABLE 8: TRACEABILITY OF GENERAL REQUIREMENTS 144

TABLE 9: TRACEABILITY OF FUNCTIONAL REQUIREMENTS: AVAILABILITY MANAGEMENT 148

TABLE 10: TRACEABILITY OF FUNCTIONAL REQUIREMENTS: MESSAGE PASSING 150

TABLE 11: TRACEABILITY OF FUNCTIONAL REQUIREMENTS: WORKFLOW MANAGEMENT 153

TABLE 12: TRACEABILITY OF FUNCTIONAL REQUIREMENTS: SYSTEM MONITORING 156

TABLE 13: TRACEABILITY OF FUNCTIONAL REQUIREMENTS: RELIABILITY 158

TABLE 14: TRACEABILITY OF CSCI EXTERNAL INTERFACE REQUIREMENTS 161

TABLE 15: TRACEABILITY OF CSCI INTERNAL DATA REQUIREMENTS 169

TABLE 16: TRACEABILITY OF SYSTEM REQUIREMENTS 169
i o n C o n t r o l S y s t e m (D A C S)

0 1

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
About th i s Document

This chapter describes the organization and content of the document and includes

the following topics:

■ Purpose

■ Scope

■ Audience

■ Related Information

■ Using this Document
i o n C o n t r o l S y s t e m (D A C S)

1 i

S o f t w a r e
I D C D O C U M E N T A T I O N

ii
About th i s Document

PURPOSE

This document describes the design and requirements of the Distributed Process-

ing Computer Software Configuration Item (CSCI) of the International Data Centre

(IDC). The collection of software is more commonly referred to as the Distributed

Application Control System (DACS). The DACS consists of commercial-off-the-

shelf (COTS) software and Science Applications International Corporation (SAIC)

designed Computer Software Components (CSC) including server applications, cli-

ent applications, one global library, and processing scripts.

SCOPE

The DACS software is identified as follows:

Title: Distributed Application Control System

Abbreviation: DACS

This document describes the architectural and detailed design of the software

including its functionality, components, data structures, high-level interfaces,

method of execution, and underlying hardware. Additionally, this document speci-

fies the requirements of the software and its components. This information is mod-

eled on the Data Item Description for Software Design [DOD94a] and Data Item

Description for Software Requirements Specification [DOD94b].
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼About this Document
AUDIENCE

This document is intended for all engineering and management staff concerned

with the design and requirements of all IDC software in general and of the DACS

in particular. The detailed descriptions are intended for programmers who will be

developing, testing, or maintaining the DACS.

RELATED INFORMATION

See “References” on page 175 for a list of documents that supplement this docu-

ment. The following UNIX Manual (man) Pages apply to the existing DACS soft-

ware:

■ dbserver(1)

■ dman(1)

■ interval_router(1)

■ libipc(3), birdie(1)

■ recycler_server(1)

■ schedclient(1), scheduler(1)

■ SendMessage(1)

■ tis_server(1), tiseg_server(1), ticron_server(1), tin_server(1),

WaveGet_ server(1)

■ tuxpad(1)

■ tuxshell(1)

■ WaveGet_server(1)

■ WorkFlow(1)

USING TH IS DOCUMENT

This document is part of the overall documentation architecture for the IDC. It is

part of the Software category, which describes the design of the software. This

document is organized as follows:
iii

i o n C o n t r o l S y s t e m (D A C S)

1

iv

▼ About this Document

S o f t w a r e
I D C D O C U M E N T A T I O N
■ Chapter 1: Overview

This chapter provides a high-level view of the DACS, including its func-

tionality, components, background, status of development, and current

operating environment.

■ Chapter 2: Architectural Design

This chapter describes the architectural design of the DACS, including its

conceptual design, design decisions, functions, and interface design.

■ Chapter 3: Tuxedo Components and Concepts

This chapter describes key software components and concepts of the

Transactions for UNIX Extended for Distributed Operations (Tuxedo)

(COTS) software product used by the DACS.

■ Chapter 4: Detailed Design

This chapter describes the detailed design of the SAIC-supplied Distrib-

uted Processing CSCs, including their data flow, software units, and

database design.

■ Chapter 5: Requirements

This chapter describes the general, functional, and system requirements

of the DACS.

■ References

This section lists the sources cited in this document.

■ Glossary

This section defines the terms, abbreviations, and acronyms used in this

document.

■ Index

This section lists topics and features provided in the document along with

page numbers for reference.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼About this Document
Convent ions

This document uses a variety of conventions, which are described in the following

tables. Table I shows the conventions for data flow diagrams. Table II shows the

conventions for entity-relationship diagrams. Table III lists typographical conven-

tions. Table IV explains certain technical terms that are unique to the DACS and are

used in this document. For convenience, these terms are also included in the Glos-

sary, which is located at the end of this document.

TABLE I: DATA FLOW SYMBOLS

Description1

1. Symbols in this table are based on Gane-Sarson conventions [Gan79].

Symbol

host (computer)

process

external source or sink of data (left)

duplicated external source or sink of data (right)

data store (left), duplicated data store (right)

 D = disk store
 Db = database store
 MS = mass store

queue

control flow

data flow

decision

#

D D
v

i o n C o n t r o l S y s t e m (D A C S)

1

vi

▼ About this Document

S o f t w a r e
I D C D O C U M E N T A T I O N
TABLE II: ENTITY-RELATIONSHIP SYMBOLS

Description Symbol

One A maps to one B.

One A maps to zero or one B.

One A maps to many Bs.

One A maps to zero or many Bs.

database table

A B

A B

A B

A B

tablename

primary key
foreign key

attribute 1
attribute 2
.
.
.

attribute n
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼About this Document

TABLE III: TYPOGRAPHICAL CONVENTIONS

Element Font Example

database table

database table and column,
when written in the dot
notation

bold interval

interval.state

database columns

processes, software units,
and libraries

user-defined arguments and
variables used in parameter
(par) files or program com-
mand lines

COTS BEA/Tuxedo supplied
titles of documents

server software (all CAPS)

 italics state

tuxshell

target-interval-size

(DACS) Software User Manual
Distributed Application Control System

BRIDGE

computer code and output

filenames, directories, and
web sites

text that should be typed in
exactly as shown

courier interval_by_wfdisc()

/src/distributed/src/tis

man tis_server

TABLE IV: TECHNICAL TERMS

Term Description

admin server Tuxedo server that provides interprocess communication and
maintains the distributed processing state across all machines in
the application. Admin servers are provided as part of the Tux-
edo distribution.

application (DACS,
Tuxedo)

System of cooperating processes configured for a specific func-
tion to be run (in a distributed fashion) by Tuxedo. Also used in a
more general sense to refer to all objects included in one particu-
lar ubbconfig file (machines, groups, servers) and associated
shared memory resources, qspaces, and clients.

application server Server that provides functionality to the application.
vii

i o n C o n t r o l S y s t e m (D A C S)

1

viii

▼ About this Document

S o f t w a r e
I D C D O C U M E N T A T I O N
backup (component) System component that is provided redundantly. Backups exist
on the machine, group, server, and services level. Appropriate
backups are configured to seamlessly take over processing as
soon as a primary system component fails or becomes unavail-
able.

boot Action of starting a server process as a memory-resident task.
Booting the whole application is equivalent to booting all speci-
fied server processes (admin servers first, application servers sec-
ond).

client Software module that gathers and presents data to an applica-
tion; it generates requests for service and receives replies. This
term can also be used to indicate the requesting role that a soft-
ware module assumes by either a client or server process.1

DACS machines Machines on a Local Area Network (LAN) that are explicitly
named in the *MACHINES and *NETWORK sections of the
ubbconfig file. Each machine is given a logical reference (see
LMID) to associate with its physical name.

data monitors Class of application servers that monitor data streams and data
availability, form data intervals, and initiate a sequence of gen-
eral processing servers when a sufficiently large amount of
unprocessed data are found.

dequeue Remove a message from a Tuxedo queue.

enqueue Place a message in a Tuxedo queue.

forwarding agent Application server TMQFORWARD that acts as an intermediary
between a message queue on disk and a group of processing
servers advertising a service. The forwarding agent uses transac-
tions to manage and control its forwarding function.

generalized process-
ing server

DACS application server (tuxshell) that is the interface between
the DACS and the Automatic Processing software. It executes
application programs as child processes.

instance Running computer program. An individual program may have
multiple instances on one or more host computers.

TABLE IV: TECHNICAL TERMS (CONTINUED)

Term Description
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼About this Document
LMID Logical machine identifier: the logical reference to a machine
used by a Tuxedo application. LMIDs can be descriptive, but
they should not be the same as the UNIX hostname of the
machine.

Master (machine) Machine that is designated to be the controller of a DACS (Tux-
edo) application. In the IDC application the customary logical
machine identifier (LMID) of the Master is THOST.

message interval Entry in a Tuxedo queue within the qspace referring to rows in
the interval or request tables. The DACS programs ensure that
interval tables and qspace remain in synchronization at all times.

message queue Repository for data intervals that cannot be processed immedi-
ately. Queues contain references to the data while the data
remains on disk.

partitioned State in which a machine can no longer be accessed from other
DACS machines via IPC resources BRIDGE and BBL.

qspace Set of message queues grouped under a logical name. The IDC
application has a primary and a backup qspace. The primary
qspace customarily resides on the machine with logical reference
(LMID) QHOST.

server Software module that accepts requests from clients and other
servers and returns replies.2

server group Set of servers that have been assigned a common GROUPNO
parameter in the ubbconfig file. All servers in one server
group must run on the same logical machine (LMID). Servers in
a group often advertise equivalent or logically related services.

service Action performed by an application server. The server is said to
be advertising that service. A server may advertise several ser-
vices (multiple personalities), and several servers may advertise
the same service (replicated servers).

shutdown Action of terminating a server process as a memory-resident
task. Shutting down the whole application is equivalent to termi-
nating all specified server processes (application servers first,
admin servers second) in the reverse order that they were
booted.

TABLE IV: TECHNICAL TERMS (CONTINUED)

Term Description
ix

i o n C o n t r o l S y s t e m (D A C S)

1

x

▼ About this Document

S o f t w a r e
I D C D O C U M E N T A T I O N
SRVID Server identifier: integer between 1 and 29999 uniquely refer-
ring to a particular server. The SRVID is used in the ubbconfig
file and with Tuxedo administrative utilities to refer to this server.

transaction Set of operations that is treated as a unit. If one of the opera-
tions fails, the whole transaction is considered failed and the sys-
tem is “rolled back” to its pre-transaction processing state.

tuxpad DACS client that provides a graphical user interface for common
Tuxedo administrative services.

ubbconfig file Human readable file containing all of the Tuxedo configuration
information for a single DACS application.

1. Tuxedo clients send and receive messages to and from a server, queue messages to a Tuxedo
queue, or remove messages from a Tuxedo queue.

2. Tuxedo servers are booted and shut down by the DACS and may run on a remote machine.
Servers may be supplied by the Tuxedo distribution (upper case names) or by application
programmers (lower case names).

TABLE IV: TECHNICAL TERMS (CONTINUED)

Term Description
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 1: Ove rv iew

This chapter provides a general overview of the DACS software and includes the

following topics:

■ Introduction

■ Functionality

■ Identification

■ Status of Development

■ Background and History

■ Operating Environment
i o n C o n t r o l S y s t e m (D A C S)

1 1

S o f t w a r e
I D C D O C U M E N T A T I O N

2

Chapter 1: Ove rv iew

INTRODUCT ION

The software of the IDC acquires time-series and radionuclide data from stations of

the International Monitoring System (IMS) and other locations. These data are

passed through a number of automatic and interactive analysis stages, which cul-

minate in the estimation of location and in the origin time of events (earthquakes,

volcanic eruptions, and so on) in the earth, including its oceans and atmosphere.

The results of the analysis are distributed to States Parties and other users by vari-

ous means. Approximately one million lines of developmental software are spread

across six CSCIs of the software architecture. One additional CSCI is devoted to

run-time data of the software. Figure 1 shows the logical organization of the IDC

software. The Distributed Processing CSCI technically includes the DACS. How-

ever, in practice, the DACS is synonymous with the Distributed Processing CSCI.

The DACS consists of the following CSCs:

■ Application Services

This software consists of the SAIC-supplied server and client processes of

the DACS.

■ Process Monitoring and Control

This software consists of scripts and GUIs that control the way the DACS

operates.

■ Distributed Processing Libraries

This software consists of libraries common to the DACS processes.

■ Distributed Processing Scripts

This software consists of a few utilities that create and manage certain

aspects of the DACS.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 1:

Overview
FIGURE 1. IDC SOFTWARE CONFIGURATION HIERARCHY

Automatic
Processing

Interactive
Processing

Distributed
Processing

Data
Services

System
Monitoring

Station
Processing

Network
Processing

Atmospheric
Transport

Time-series
Analysis

Bulletin Process
Monitoring
and Control

Application
Services

Continuous
Data
Subsystem

Message
Subsystem

Subscription
Subsystem

Data Services
Utilities and

Data
Archiving

Database
Tools

Configuration
Management

Performance
Monitoring

System
Monitoring

IDC Software

Retrieve
Subsystem

Web
Subsystem

Data for
Software

Interactive
Data

System
Monitoring
Data

Automatic
Processing

Distributed
Processing
Data

Data
Services

Data
Management

COTS
Data

Environmental
Data

Post-
location
Processing

Time-series
Libraries

Operational
Scripts

Interactive
Tools

Distributed
Processing
Scripts

Data
Management

Database
Libraries

Data

Data

Event
Screening

Time-series
Tools

Libraries

Radionuclide
Processing

Authentication
Services

Analysis
Libraries

Radionuclide
Analysis

Distributed
Processing
Libraries
3

i o n C o n t r o l S y s t e m (D A C S)

1

4

▼

Chapter 1:

Overview

S o f t w a r e
I D C D O C U M E N T A T I O N
The DACS is the software between the operating system (OS) and the IDC appli-

cation software. The purpose of this “middleware” is to distribute the application

software over several machines and to control and monitor the execution of the

various components of the application software.

Figure 2 shows the relationship of the DACS to other subsystems of the IDC soft-

ware.

FIGURE 2. RELATIONSHIP OF DACS TO OTHER SUBSYSTEMS OF IDC
SOFTWARE

The Continuous Data Subsystem receives data from primary seismic, hydroacous-

tic, and infrasonic (S/H/I) stations. The Retrieve Subsystem receives data from aux-

iliary seismic stations. The data consists of ancillary information stored in the

ORACLE operations database and binary waveform files stored on the UNIX file-

system. The ancillary information consists of rows in the wfdisc table and each row

operationsDb

(Automatic
DACS

Processing
configuration)

data stations
continuous

IMS

Data
Continuous

Subsystem
Subsystem
Retrieve

station
seismic
auxiliary

IMS
a b

waveforms
(wfdiscs)

waveforms
(wfdiscs)

Processing
Automatic

Processing
Interactive

segmented
data

continuous
data

(Interactive
DACS

Processing
configuration)
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 1:

Overview
includes file pointers to raw waveform data. Within the IDC software, the DACS is

deployed in two separate application instances. The DACS supports both auto-

matic and interactive processing. The DACS addresses different needs of the soft-

ware within each of these CSCIs.

Figure 3 shows key features of the DACS that support the Automatic Processing

software.

FIGURE 3. DACS APPLICATION FOR AUTOMATIC PROCESSING

data station
continuous

IMS

Data
Continuous

Subsystem

1

Subsystem
Retrieve

2

station
seismic
auxiliary

IMScontinuousa b

Automatic
Tuxedo for

Processing

3

pipeline
automatic

process
control

5

monitors
data

4 wfdiscs,
intervals

intervals

monitoring
workflow

7

waveforms
(wfdiscs)

waveforms
(wfdiscs)

segmented
data

Processing
Automatic

6

OperationsDb intervals

data
5

i o n C o n t r o l S y s t e m (D A C S)

1

6

▼

Chapter 1:

Overview

S o f t w a r e
I D C D O C U M E N T A T I O N
In support of Automatic Processing, the DACS is a queue-based system for sched-

uling a sequence of automated processing tasks. The processing tasks collectively

address the mission of the Automatic Processing software, while the DACS adds a

non-intrusive control layer. The DACS supports sequential, parallel, and compound

sequences of processing tasks, collectively referred to as processing pipelines.

These processing pipelines are initiated by the DACS data monitor servers, which

query the database looking for newly arrived data. Confirmed data results in new

processing intervals that are stored in the database and the DACS queuing sys-

tem.1 The database intervals record the state of processing, and this state is visu-

ally displayed through the GUI-based WorkFlow monitoring application.

Figure 4 shows key features of the DACS application that supports the Interactive

Processing software.

In support of Interactive Processing, the DACS is a messaging-based system, which

enables data sharing between Interactive Tools. The DACS allows separate pro-

grams to exchange messages in near real-time. The DACS provides some manage-

ment of the Interactive Tools by automatically invoking a requested program when

needed. This feature allows an analyst to easily summon the processing resources

of occasionally used auxiliary programs. A DACS monitoring utility confirms that

processes are running and accepting messages. In support of Interactive Process-

ing, the DACS also supports interactive requests to certain Automatic Processing

applications.

1. The DACS queuing system is not shown the figure.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 1:

Overview
FIGURE 4. DACS APPLICATION FOR INTERACTIVE PROCESSING

FUNCT IONALITY

Figure 5 shows the concept of middleware. The DACS coordinates the execution

of various application programs on a network of computers, by controlling these

application programs on each machine and using the underlying operating system

to maintain contact. The UNIX operating system contains some tools for distrib-

uted command execution (the suite of remote commands: rsh, rusers, rcp, ...) but

these lack the extended functionality necessary to support a highly available auto-

matic application. In particular these tools intrinsically do not support process mon-

itoring, process and resources replication and migration, and transactions, which

are all important elements in a highly available and fault-tolerant distributed appli-

cation.

analyst

Interactive
Tuxedo for

Processing

2

pipeline
automatic

process
control

4

Tools execution
Interactive

and message
monitoring

3
IPC

analyst
review

IPC messages
and

events

Processing
Automatic

5

Tools
Interactive

1

7

i o n C o n t r o l S y s t e m (D A C S)

1

8

▼

Chapter 1:

Overview

S o f t w a r e
I D C D O C U M E N T A T I O N
Figure 5 shows how the DACS controls the application software that is running on

several machines in a distributed fashion. The individual instances of the DACS

coordinate among themselves using features of the underlying operating system

and the LAN connecting the machines.

The DACS provides UNIX process management, failure retries, controlled start up

and shut down, priority processing, run-time reconfiguration, a monitoring inter-

face, and fault-tolerant operations. All of these functions are supported across a

distributed computing platform.

FIGURE 5. DACS AS MIDDLEWARE

The operating system used at the IDC is Solaris, a version of UNIX by Sun Micro-

systems; the application software is the SAIC-supplied software, and the DACS

middleware is a product called Tuxedo, which is provided by BEA. Tuxedo is widely

used for banking applications and other branches of industry that maintain distrib-

uted applications (for example, phone companies, courier services, and chain

computer 1

DACS

computer 2

DACS

computer 3

DACS

software
application

system
operating

software
application

software
application

system
operating

system
operating
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 1:

Overview
retailers). Tuxedo is a powerful and versatile product of which each application

typically uses only a part. This document does not provide an introduction to the

full scope of Tuxedo (see [And96] and [BEA96]). Instead, only those features of

Tuxedo with a direct bearing on the IDC software are included.

Tuxedo is a transaction manager that coordinates transactions across one or more

transactional resource managers. Example transactional resource managers include

database servers such as ORACLE and the queueing system that is included with

Tuxedo.2 This queueing system is used extensively by the DACS for reliable mes-

sage storage and forwarding within the IDC Automatic and Interactive Processing

software. The disk-based queues and the database maintain the state of the sys-

tem during any system or process failure. Tuxedo also provides extensive backup

and self-correcting capability, so that network interruptions or scheduled mainte-

nance activity do not disrupt processing.

IDENT IF ICAT ION

The DACS components are identified as follows:

■ birdie

■ dbserver

■ dman

■ interval_router

■ libipc

■ msg_window

■ operate_admin

■ ProcessInterval

2. The DACS currently does not use Tuxedo for coordinating or managing ORACLE database transactions.
The DACS relies upon the native Generic Database Interface (GDI) API (libgdi) for all database opera-
tions. As such, the DACS coordinates database and Tuxedo queuing transactions within the specific server
implementation and without automatic Tuxedo control. Inherent coordination of database and queuing
transactions (for example, two phase commits) would require passing ORACLE transactions through Tux-
edo.
9

i o n C o n t r o l S y s t e m (D A C S)

1

10

▼

Chapter 1:

Overview

S o f t w a r e
I D C D O C U M E N T A T I O N
■ qinfo

■ recycler_server

■ schedclient

■ schedule_it

■ scheduler

■ SendMessage

■ ticron_server

■ tin_server

■ tis_server

■ tiseg_server

■ tuxpad

■ tuxshell

■ WaveGet_server

■ WorkFlow

STATUS OF DEVELOPMENT

This document describes software that is for the most part mature and complete.

BACKGROUND AND H ISTORY

A previous implementation of the DACS, based upon the Isis distributed processing

system, was deployed into operations at the PIDC at the Center for Monitoring

Research (CMR) in Arlington, Virginia, U.S.A. in the early 1990s. The current Tux-

edo-based DACS has been used at the PIDC and the International Data Centre of

the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO) in Vienna, Aus-

tria since the spring of 1998. The graphical operator console, tuxpad, was deployed

during 1999, and the DACS scheduling system was completely redesigned in early

2000.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 1:

Overview
OPERAT ING ENVIRONMENT

The following paragraphs describe the hardware and COTS software required to

operate the DACS.

Hardware

The DACS is highly scalable and is designed to run on Sun Microsystems SPARC

workstations/SPARC Enterprise servers. The DACS for automatic processing runs

on a distributed set of machines that can scale from a handful of machines to tens

of machines depending on the data volume and available computing resources.

The DACS for interactive processing is most typically run in a stand-alone single

SPARC workstation configuration. SPARC workstation and server models are

always changing, but a representative workstation is the SPARC Ultra 10, and a

representative Enterprise Server is the SPARC Ultra Enterprise 4,000 configured

with six Central Processing Units (CPUs). Typically, the hardware is configured with

between 64-1,024 MB of memory and a minimum of 10 GB of magnetic disk. The

required disk space is defined by other subsystems because the DACS imposes rela-

tively minor disk space requirements with the one exception being in server pro-

cess logging, which shares significant disk space usage requirements with other

CSCIs. The DACS relies upon other system infrastructure and services including the

LAN, Network File System (NFS), the ORACLE database server, and the mail server.

Commerc i a l -Off -The-She l f So f tware

The software is designed for Solaris 7, ORACLE 8i, and Tuxedo 6.5.
11

i o n C o n t r o l S y s t e m (D A C S)

1

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 2: A r ch i tec tu ra l Des i gn

This chapter describes the architectural design of the DACS and includes the fol-

lowing topics:

■ Conceptual Design

■ Design Decisions

■ Functional Description

■ Interface Design
i o n C o n t r o l S y s t e m (D A C S)

1 13

S o f t w a r e
I D C D O C U M E N T A T I O N

14
Chapter 2: A r ch i tec tu ra l Des i gn

CONCEPTUAL DES IGN

The DACS was designed to address requirements for reliable distributed processing

and message passing within the IDC System. The requirements include a number

of processing and control features necessary for reliable automatic processing

across a distributed network of computers. The message passing requirements for

Interactive Processing entail features for passing messages between Interactive

Tools and managing the Interactive Tools session.

Figure 6 shows the conceptual data flow of the DACS for Automatic Processing.

Tuxedo provides the core distributed processing environment in the DACS. Tuxedo

servers are present on all DACS machines. This is shown at the bottom of Figure 6

where Tuxedo queuing, transactions, and process monitoring interact with all of

the DACS functions. The DACS monitors the database for data, creates processing

intervals (characterized by the start times and end times) subject to data availability

(process 2), and manages a pipeline sequence of processing tasks for each interval.

The data monitor servers are called on a recurring basis by a scheduling server

(process 1), which manages the scheduling and execution of the data monitor ser-

vices based upon user parameters and input from the data monitors. New process-

ing intervals result in a new pipeline processing sequence that consists of one or

more processing tasks. The processing interval information is placed in both the

database and Tuxedo queues. Each processing interval contains a state field, which

is set by the DACS to reflect the current processing state of the interval. System

operators can monitor the progress of Automatic Processing by collectively moni-

toring a time window of intervals in the database. Such process workflow monitor-

ing (process 4) is conveniently presented through a GUI-based display, which

renders time interval states as colored bricks.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
FIGURE 6. CONCEPTUAL DATA FLOW OF THE DACS FOR AUTOMATIC
PROCESSING

Interval data are reliably stored in Tuxedo disk queues, which will survive machine

failure. The data monitor servers can enqueue the interval data directly into a Tux-

edo queue where the queue name is user defined. Optionally, a processing

resource allocation server can enqueue interval data into one queue from a set of

server
database

7

server
scheduling

1

monitor
data

2

processing
generalized

server

6

reprocessing of
automatic

failures due to
system errors

11

failures under
reprocessing of

operator
control

10

Tuxedo
queues

intervals
wfdiscs
intervals

intervals

intervals

Tuxedo queues, transactions, process monitoring

monitor
workflow

4

resource
processing

allocation
server

3

queue
Tuxedo

forwarding
agent

5

processing
data

application
program

9

console
operator

8

operationsDb

operationsDb
15

i o n C o n t r o l S y s t e m (D A C S)

1

16

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
possible queues, the selection being a function of the interval type or name (pro-

cess 3 in Figure 6). A Tuxedo queue forwarding server dequeues the interval data

from a Tuxedo queue within a transaction (process 5). The queue forwarder passes

the DACS generalized processing server the interval data as part of a service call

(process 6). The generalized processing server calls one or more processing applica-

tions, which subject the processing interval to the automatic processing task (pro-

cess 9). The generalized processing server manages the execution of the

processing task and handles successful or failed runs and timeouts. Failed process-

ing intervals as well as timeout of the application program result in a transaction

rollback of the queue interval by the Tuxedo queue forwarder and a retry, which

repeats the queue forwarding sequence (processes 5, 6, 7, and 9). Successful pro-

cessing intervals result in an enqueue of the updated interval into another down-

stream Tuxedo queue and a transactional commit of the original queue interval

dequeued by the Tuxedo queue forwarder. The downstream Tuxedo queue man-

ages the next step in the pipeline processing sequence, which repeats the queue

forwarding sequence (processes 5, 6, 7, and 9). The generalized processing server

manages the interval data in the database by updating the interval state to reflect

the current processing state. The actual database update is handled by the general-

ized database application server, which retains one connection to the database

while multiplexing database access to a number of generalized processing servers

(process 7). Queue intervals that fail due to system errors (for example, machine

crash) can be directed to a system-wide error queue from where they are automat-

ically recycled back into service by the automatic reprocessing server (process 11).

The system operator can control DACS via the GUI-based operator console (pro-

cess 8). Control includes complete DACS bootup or shut down, boot and shut

down on a machine, process-group or process-server-basis control of the DACS

scheduling system, and monitoring of Tuxedo queues. The system operator can

also manually reprocess failed intervals via a feature of the workflow monitoring

system (process 10).

Figure 7 shows the conceptual data flow of the DACS for Interactive Processing,

using as an example a request for frequency-wavenumber (Fk) analysis of a signal.

Here, the DACS supports the asynchronous messaging between Interactive Tools,

manages the interactive session by monitoring messages and Interactive Tools
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
within the session, and starts the Interactive Tools on demand. All messages

exchanged between the Interactive Tools pass through Tuxedo disk queues. Stor-

ing messages within a disk-based Tuxedo queue ensures that the messaging is

asynchronous, because the message send and receive are part of separate queuing

operations and transactions. Asynchronous messaging allows for one Interactive

Tool (process 1) to send a message to another Interactive Tool that is not currently

running. A DACS application tracks all message traffic through Tuxedo IPC events,

(process 2). This application provides execution on demand for any Interactive Tool

that has been sent a message, and is not currently running in the analyst’s interac-

tive session (process 3).

FIGURE 7. CONCEPTUAL DATA FLOW OF DACS FOR INTERACTIVE
PROCESSING

analyst Tool
Interactive

(ARS)

1

Start client
(FK)

interactive
manager

analyst review

IPC broadcast
(FK)

Tuxedo queues, transactions, process monitoring, and events

session
interactive

manager

2

Tuxedo
queues

IPC
result
(FK)

IPC
result
(FK)

(FK computation
interactive client

and image display)

3

IPC request
(FK)
17

i o n C o n t r o l S y s t e m (D A C S)

1

18

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
DES IGN DEC IS IONS

All design decisions for the DACS are measured against and can be traced to the

significant reliability requirements for Automatic Processing. In general, the DACS

must provide fault tolerance and reliability in case of machine, server, and applica-

tion failures. Fundamentally, all processing managed by the DACS must be under

transaction control so that processing tasks can be repeated for a configured num-

ber of retries, declared failed following a maximum number of retries, and for-

warded for further processing after one and only one successful run.

The decision to introduce a reliable queuing system addresses many of the fault-

tolerance requirements because all processing is managed through reliable disk

queues under transaction control. The DACS is designed around the Tuxedo dis-

tributed processing COTS product to satisfy the requirements to support automatic

failover in the case of hardware and software failures.

The decision to use Tuxedo for the message passing requirement for the Interactive

Tools was based upon the preference to have a unified distributed processing solu-

tion for both Automatic Processing and Interactive Processing. In addition, the

Interactive Tools rely upon some limited access to Automatic Processing for on-

the-fly signal processing. Such a requirement further justifies a single unified dis-

tributed processing solution. However, a Tuxedo implementation for Interactive

Processing could be considered an overly heavy-weight solution because the fea-

tures of the COTS product far surpass the fairly limited message passing and inter-

active session management requirements.

Prog ramming Language

Each software unit of the DACS is written in the C programming language unless

otherwise noted in this document. The tuxpad script is implemented using the Perl

scripting language.

Globa l L ib ra r i e s

The software of the DACS is linked to the following shared development libraries:

libaesir, libgdi, libipc, libpar, libstdtime, and libtable.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
The software of the DACS is linked to a number of standard system libraries, the

bulk of which are required for X11 Window GUI-based applications, such as Work-

Flow.

The software is also linked to several Oracle COTS libraries indirectly through run-

time linking by libgdi. The software is linked to the following Tuxedo COTS librar-

ies: libbuft, libfml, libfml32, libgp, libtux, and libtux2.

Database

See “Database Schema Overview” on page 27 for a description of database tables

and usage by DACS.

I n te rp rocess Commun ica t ion (IPC)

By its very nature of being a distributed processing system, the DACS uses and

implements various types of IPC and IPC resources. All Tuxedo queuing operations

are a form of IPC message passing across machines. Tuxedo provides the BRIDGE1

server, which runs on each distributed machine in the DACS and provides a single

point for all Tuxedo-based distributed message sends and message receives. The

libipc messaging library implements a message passing API based upon Tuxedo

queuing. The Tuxedo system makes extensive use of the UNIX system IPC

resources including: shared memory, message queues (memory-based), and sema-

phores. Finally, the DACS relies upon the ORACLE database for another type of

IPC via creation/update, and read, to the interval, request, timestamp, and lddate

tables.

1. The BRIDGE server is not included or required for stand-alone Tuxedo applications because all messaging
is local to one machine. The current configuration of the DACS for Interactive Processing is standalone,
and as such, the BRIDGE server is not part of the application.
19

i o n C o n t r o l S y s t e m (D A C S)

1

20

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
F i l e sy s tem

The DACS uses the UNIX filesystem for reading user parameter files, writing log

files, hosting the Tuxedo qspaces and queues as well as the Tuxedo transaction log

files. The list of (libpar-based) parameter files is extensive and in general each

DACS server or client reads one or more parameter files. The DACS servers are

routinely deployed in various instances that necessitate distinct parameter files

based upon the program’s canonical parameter files.

The DACS writes log files at both the system and application level. System-level log

files are written by Tuxedo and one such User Log (ULOG) file exists per machine.

System-level errors and messages are recorded in these files. The individual ULOGS

are copied to a central location (CLOGS) by application-level scripts. Application-

level log files are written by DACS servers and clients to record the progress of pro-

cessing.

Several special system-wide files are required for the DACS. These files include

Tuxedo transaction log files (tlogs), qspace files, and the Tuxedo system configura-

tion file (ubbconfig), which defines the entire distributed application at the

machine, group, server, and service level.

UNIX Ma i l

The DACS relies upon mail services for automatic email message delivery to system

operators when the pending messages overflow in Tuxedo queues.

FTP

The DACS does not directly use or rely upon File Transfer Protocol (FTP).

Web

A Web- and Java-based Tuxedo administration tool is available for administration

of the DACS. However, this tool is not used because the custom DACS operator

console, tuxpad, is preferred over the Tuxedo Web-based solution.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
Des ign Mode l

The design of the DACS is primarily determined by the fault tolerance and reliabil-

ity requirements previously described. This section presents a detailed description

of some of the key design elements related to the DACS servers and services,

namely reliable queuing, transactions, fault-tolerant processing via backup servers,

and queue-based pipeline processing for Automatic Processing.

Figure 8 shows the logical relations between message queue, service, server, and

host. The message queue (A) contains a number of requests for service A (for

example, data intervals to be processed by the application program DFX). On three

different hosts (physical UNIX machines host 1, host 2, and host 3), three servers

(A1, A2, and A3) are running, each of which is capable of providing the service A.

The DACS assures that each service request goes to one and only one server, and is

eventually removed from the message queue only after processing is complete.

FIGURE 8. PROCESSING REQUESTS FROM MESSAGE QUEUE

host 3

A3

host 2

A2

load balancing
Tuxedo

host 1

A1
A

service A
21

i o n C o n t r o l S y s t e m (D A C S)

1

22

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Figure 9 shows a transaction as one step in a series of processing steps to be

applied to data intervals. It shows a processing server An between a message

queue A (its source queue) and a message queue B (its destination queue). The

processing server advertises service A and is capable of spawning a child process a,

the automated processing program that actually provides the service.

FIGURE 9. TRANSACTION IN DETAIL

Assuming that queue A contains at least one message, the first step of the transac-

tion (step 0) is to provisionally remove the uppermost message from queue A. In

step 1, information is extracted from the message and sent to processing server

An. Server An spawns a child process a and passes some of the information previ-

ously extracted from the message to the child process (step 2). The information

passed to the child process typically designates a data interval on which the service

a is to be performed. The child process processes the data and signals its comple-

tion to the processing server (step 3). If the data were processed successfully, a

message is placed provisionally in queue B (step 4). The concluding step 5 commits

(finalizes) the changes to the source queue A and the destination queue B.

If a failure occurs on any of the steps (0 through 5), the entire transaction is “rolled

back,” which means that the provisional queueing operations in step 0 and step 4

and any other change in the state of the system (for example, in the database) are

server:
processing

An

application
child process a:

program

0
1

5

4

5

32

A B
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
reversed. The rollback applies not only to failures of the actual processing by the

child process, but also to the queueing operations, the actions of the processing

server, and to the final commit.

Figure 10 provides further detail on the interface between the message queue and

the processing server. It shows that a forwarding agent mediates between the two.

Only the forwarding agent (a Tuxedo-supplied server called TMQFORWARD

described in “Application Servers” on page 43) handles the queue operations. Fig-

ure 10 omits the transactional components of the operation for simplicity. A “Reply

Queue” feature is provided by Tuxedo but is not exploited for building pipelines in

the IDC application; instead, the processing server places messages directly in the

next queue of the processing sequence (queue B in Figure 9, not shown on Figure

10).

FIGURE 10. FORWARDING AGENT

Dis t r ibu t ion and Backup Concept

Even with multiprocessor machines, no single computer within the IDC has the

capacity to run the entire IDC software. Therefore, the application must use several

physical machines. Moreover, the number of data sources exceeds the number of

available processors by an order of magnitude, and processing the data from a sin-

gle source requires substantial computing resources. This combination suggests a

queueing system to distribute the processing load over both space and time.

agent
forwarding

server
processing

2

4

3

1

response

request

reply

request
23

i o n C o n t r o l S y s t e m (D A C S)

1

24

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
The constraints imposed by the computer resources lead to the design of the IDC

software as a distributed application with message queues. Processing is divided

into a number of elementary services. These services are provided by server pro-

grams, which run on a number of machines under the control of the DACS. Mes-

sage queues are interspersed between the elementary services.

The distribution scheme is based on the following objectives:

■ Capacity Mapping

All machines should be loaded in accordance with their capacities.

■ Load Limitation

No component of the system should be allowed to overload to a point

where throughput would suffer.

■ Load Balancing

All machines should be used to approximately the same level of their

total capacity.

■ Minimization of Network Traffic

Whenever possible, mass data flow over the LAN should be avoided. For

example, detection processing should usually occur on the machine that

holds the data in a disk loop.

■ Catchup Capability

Some extra capacity (in terms of processing speed, n times real time)

should be reserved for occasions when processing must “catch up” with

real time.

■ Single-Point-of-Failure Tolerance

The system should withstand any single failure (hardware or software)

and allow scheduled maintenance of individual (hardware or software)

components without interrupting processing, or, if interruption is inevita-

ble, with a seamless resumption of processing.

These objectives cannot always be met. Trade-offs between objectives arise given

the fact that hardware and development resources are finite.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
P ipe l i nes

During automatic processing, the same data interval is processed by a number of

application programs in a well-defined processing sequence known as a “pipe-

line.” For example, station processing consists of the application programs DFX

and StaPro, and network processing for SEL1 is comprised of GA_DBI, GAassoc,

GAconflict, and WaveExpert.

Figure 11 shows how a pipeline can be constructed. The data monitor checks the

state of the database and creates intervals and enqueues messages when a suffi-

cient amount of unprocessed data are present or when some other criterion is ful-

filled (for example, a certain time has elapsed). Each processing server receives

messages from its source queue and spawns child processes that perform the

actual processing step in interaction with the database. After completion, the pro-

cessing server places a new message in its destination queue, which in turn is the

source queue for the next processing server downstream and so on, until messages

finally arrive in the “done” queue.
25

i o n C o n t r o l S y s t e m (D A C S)

1

26

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 11. CONSTRUCTION OF A PIPELINE

A

done

C

B

server A
processing

server B
processing

server C
processing

monitor
data

program a
application

program b
application

program c
application

operationsDb

1

2 3

4 5

6 7
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
Database Schema Overv iew

The DACS uses the ORACLE database for the following purposes:

■ To obtain data availability (acquired waveform data, submitted data

requests)

■ To obtain interval processing progress via queries to the interval table

■ To create processing intervals and requests and update their states

■ To obtain and store the DACS processing progress by time (for example,

tis_server progress)

■ To obtain and store specific station wfdisc.endtime information in an effi-

cient manner

■ To obtain network, station, and site affiliation information

■ To store and manage unique interval identifier information

Table 1 shows the tables used by the DACS along with a description of their use.

The Name field identifies the database table. The Mode field is “R” if the DACS

reads from the table and “W” if the system writes/updates to the table.

TABLE 1: DATABASE TABLES USED BY DACS

Name Mode Description

affiliation R This table is a general mapping table, which affiliates
information. The DACS uses the affiliation information to
obtain mappings between network and stations and sta-
tions and sites during station-based interval creation.

interval R/W This table contains the state of all processing intervals
that are created, updated, displayed, and managed by
the DACS.

lastid R/W This table contains identifier values, which the DACS uses
to ensure unique interval.intvlid for each interval created.
27

i o n C o n t r o l S y s t e m (D A C S)

1

28

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
FUNCT IONAL DESCR IPT ION

This section describes the main functions of the DACS. Figure 12, and Figure 13 on

page 34, are referenced in the Functional Description.

Dis t r ibu ted P rocess Mon i to r ing ,
Re l i ab le Queue ing , and
Transac t ions

Tuxedo provides the core distributed processing environment in the DACS. Tuxedo

servers are present on all DACS machines. This is shown at the bottom of Figure 12

where Tuxedo queuing, transactions, and process monitoring interact with all of

the DACS functions.

The queueing function, transactions, replicated or backup servers, and pipeline

processing are described in the previous section. The Tuxedo-supplied distributed

process monitoring function involves the real-time monitoring of every DACS

server (IDC or COTS supplied) such that the servers are automatically rebooted

upon any application failure or crash.

request R/W This table contains the state of auxiliary waveform
requests, which the DACS uses to manage and initiate
auxiliary waveform acquisition processing. Optionally,
this table is used to create auxiliary station pipeline pro-
cessing intervals.1

timestamp R/W This table contains time markers, which the DACS uses to
track interval creation progress and to retrieve
wfdisc.endtime by station.

wfdisc R This table contains references to all acquired waveform
data, which the DACS reads to determine data availability
for the creation of processing intervals.

1. The IDC does not currently use this feature.

TABLE 1: DATABASE TABLES USED BY DACS (CONTINUED)

Name Mode Description
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
FIGURE 12. DATA FLOW OF THE DACS FOR AUTOMATIC PROCESSING

operationsDb

operationsDb

Tuxedo
queues

intervals
wfdiscs
intervals

intervals

intervals

scheduler

1

server
scheduling

tiseg_server, tin_server,

2

tis_server, ticron_server,

monitor
data

WaveGet_server

inteval_router

3

resource
processing

allocation
server

WorkFlow

4

monitor
workflow

recycler_server

11

reprocessing of
automatic

failures due to
system errors

ProcessInterval

10

SendMessage

failures under
reprocessing of

operator
control

TMQFORWARD

5

queue
Tuxedo

forwarding
agent

tuxshell

6

processing
generalized

server

dbserver

7

server
database

tuxpad

8

DFX

9

console
operator processing

data

application
program

Tuxedo queues, transactions, process monitoring
29

i o n C o n t r o l S y s t e m (D A C S)

1

30

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Data Mon i to r ing

The data monitoring function determines whether new data have become avail-

able or if a data condition or state is met. If the monitored condition is met, interval

data are inserted into the database, or existing rows are updated from interval.state

to interval.queued, and the interval information is inserted into Tuxedo queues (pro-

cess 2 in Figure 12 on page 29). The data monitored in the database varies, and

several data monitor servers process the different types of data.

The component tis_server monitors S/H/I data delivered from stations that have a

continuous, real-time data feed. tiseg_server monitors auxiliary seismic station

data. ticron_server monitors a timestamp value in the database, which tracks the

last time the server created a network processing interval. The server forms net-

work processing intervals by time, and so its primary function ensures the timely

creation of the network processing intervals. tin_server monitors station processing

progress by querying the state of a group of stations. The server creates intervals

based upon a trade-off between data availability and elapsed time.

WaveGet_server is a data monitor server that polls the request table for auxiliary-

station-waveform requests and initiates actions to acquire the requested wave-

forms.

For each interval created or updated, a data monitor also sends a processing

request message to interval_router (process 3 in Figure 12 on page 29), or, depend-

ing on configuration, bypasses interval_router and enqueues the message(s)

directly in Tuxedo queues. The Tuxedo queue messages seed the DACS with time-

interval-based pipeline processing requests, which are managed by the DACS.

Sys tem Schedu l ing

The system scheduling function provides a centralized server, scheduler for auto-

matic data monitor calls and a tool for centralized management of the scheduling

system (process 1 in Figure 12 on page 29). The DACS data monitor application

servers (for example, tis_server, WaveGet_server) await service calls from scheduler
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
to perform or complete their data monitoring function and return acknowledg-

ments to scheduler following completion of their service cycle. The scheduling sys-

tem can be controlled by the user via the schedclient application.

The tuxpad GUI operator console provides a convenient interface to schedclient.

P ipe l i ne P rocess ing

The pipeline processing function provides for reliable process sequencing (process

6 in Figure 12 on page 29) and is implemented by the generalized processing

server tuxshell. Pipeline process sequencing includes application software execu-

tion and management within a transactional context. tuxshell receives interval

messages within a TMQFORWARD transaction (process 5 in Figure 12 on page

29). tuxshell extracts parameters from the interval message, constructs an applica-

tion processing command line and then executes and manages the processing

application (process 9 in Figure 12 on page 29). The processing application is typi-

cally an Automatic Processing program (for example, DFX). Processing failures

result in transaction rollback and subsequent retries up to a configured maximum

number of attempts. Successful processing results in forwarding the interval infor-

mation via an enqueue into a downstream queue in the pipeline sequence. The

state of each interval processed is updated through server calls to the database

application server, dbserver (process 7 in Figure 12 on page 29).

Workflow Mon i to r ing

The workflow monitoring function provides a graphical representation of interval

information in the system database, in particular in the interval and request data-

base tables (process 4 in Figure 12 on page 29). The monitoring function is imple-

mented by the WorkFlow program, which provides a GUI-based operator console

for the purpose of monitoring the progress of all automatic processing pipelines in

real or near real time. The current state of all processing pipelines is recorded in the

state column of each row in the interval and request database tables. Workflow

monitoring is primarily a read-only operation. However, failed intervals can be

reprocessed under operator control (process 10 in Figure 12 on page 29). The

interval reprocessing function is implemented by the SendMessage client and Pro-
31

i o n C o n t r o l S y s t e m (D A C S)

1

32

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
cessInterval script, which collectively change the state in the database of the inter-

val being reprocessed and requeue the interval message to the source queue.

These operations manually initiate automatic processing on the interval.

Automat i c P rocess ing U t i l i t i e s

Elements of scalability and reliability in the DACS are provided by several Auto-

matic Processing utilities. Two of these utilities have been described above:

dbserver updates the database for all interval.state or request.state updates within

the DACS (process 7 in Figure 12 on page 29), and interval_router (process 3 in

Figure 12 on page 29) routes interval messages created by the data monitor serv-

ers to a set of queues as a function of the interval name. System errors such as a

machine crash or network failure can and do result in messages that cannot be reli-

ably delivered within the distributed processing system. The DACS message pass-

ing is based on Tuxedo disk queues, which safeguard against the loss of messages

during system failures.2 Queue operations that cannot be successfully completed

typically result in message redirection to an error queue. These messages are then

automatically requeued for reprocessing attempts by recycler_server (process 11 in

Figure 12 on page 29).

Opera to r Conso le

The operator console function provides an interface for controlling the DACS (pro-

cess 8 in Figure 12 on page 29). This function is implemented by tuxpad, a conve-

nient centralized operator console that can be used to control all aspects of the

running distributed application.

I n te rac t i ve P rocess ing

The DACS provides several key functions for Interactive Processing including asyn-

chronous message passing, session management for Interactive Tools, and access

to Automatic Processing applications. The Interactive Tools are used by an analyst

2. Tuxedo queue message loss or queue corruption could occur if the physical disk drive hosting the qspace
failed.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
(see Figure 13) within an interactive session that is typically hosted by a single

workstation. Tuxedo is thus configured to run stand-alone on the single worksta-

tion, which results in all the DACS processes, queuing, and Automatic Processing

being isolated on this machine.3 The stand-alone machine is still connected to the

operational LAN with full access to the database server, and so on. The analyst is

principally interested in the review of events formed by Automatic Processing and

relies upon the key interactive event review application (process 1), which is imple-

mented by the ARS program. In addition, interactive review relies on a collection of

Interactive Tools that exchange messages. The DACS supports asynchronous mes-

sage passing via the libipc message passing library. The library is based upon Tux-

edo disk queuing, and as such, all messages among the Interactive Tools pass

through Tuxedo queues. The DACS also supports management of the interactive

session including the ability to start up and shut down Interactive Tools on

demand. Interactive session management is implemented by the dman client (pro-

cess 2). For example, a message sent from ARS to XfkDisplay, via libipc, results in

both an enqueue of the message to the XfkDisplay queue and an IPC event, which

is sent to dman by libipc to broadcast the request for XfkDisplay service. dman will

automatically start the XfkDisplay application (process 3) if it is not already run-

ning. dman monitors all messaging among the Interactive Tools as well as the

health of all Interactive Tools within the session. Interactive tools can be manually

started or terminated via the dman GUI interface. Access to Automatic Processing

is provided to a limited degree: Interactive Tools can send messages requesting cer-

tain Automatic Processing services for interactive recall processing. This linkage is

not shown in Figure 13, but this function was described above as the generalized

processing server, tuxshell (processes 6 and 9 in Figure 12 on page 29).

3. The stand-alone configuration is a system configuration decision based largely upon the notion of one
analyst, one machine. DACS for Interactive Processing could be distributed over a set of workstations
through configuration changes.
33

i o n C o n t r o l S y s t e m (D A C S)

1

34

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 13. DATA FLOW OF THE DACS FOR INTERACTIVE PROCESSING

INTERFACE DES IGN

This section describes the DACS interface with other IDC systems, external users,

and operators.

I n te r f ace w i th Othe r IDC Sys tems

The DACS controls Automatic Processing by initiating and managing pipeline pro-

cessing sequences. The DACS relies upon the Continuous Data Subsystem to

acquire new sensor data so that new processing time intervals can be generated.

analyst

Start client
(FK)

interactive
manager

analyst review

IPC broadcast
(FK)

Tuxedo queues, transactions, process monitoring, and events

Tuxedo
queues

IPC
result
(FK)

IPC
result
(FK)

ARS

1

Tool
Interactive

dman

2

session
interactive

manager

XfkDisplay

3

(FK computation
interactive client

and image display)

IPC request
(FK)
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
The database serves as the data exchange broker for the DACS and the various

Data Services subsystems. The DACS provides message passing and session man-

agement to the Interactive Tools within the Interactive Processing System.

I n te r f ace w i th Ex te rna l Use r s

The DACS has no interface with external users.

I n te r f ace w i th Opera to r s

System operators control and monitor the DACS through tuxpad and WorkFlow as

described above. The DACS for Automatic Processing and Interactive Processing is

designed to run unattended and to survive many failure conditions. Ideally, opera-

tor control is limited to planned system start up, shut down, and maintenance.

The DACS servers record processing progress such as interval creation and pipeline

processing executions on the system-wide logging directory tree. Automatic Pro-

cessing progress and problem detection and resolution can be ascertained through

the inspection and analysis of one or more of the DACS log files. Operators will

often be the first to examine the log file; however, developers of the Automatic

Processing programs may examine the files in the course of debugging at system

level.
35

i o n C o n t r o l S y s t e m (D A C S)

1

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 3: Tuxedo Component s
and Concept s

This chapter describes the Tuxedo COTS software product including the compo-

nents and function of Tuxedo used by the DACS and includes the following topics:

■ Processing Units

■ Tuxedo Components of DACS
i o n C o n t r o l S y s t e m (D A C S)

1 37

S o f t w a r e
I D C D O C U M E N T A T I O N

38
Chapter 3: Tuxedo Component s
and Concept s

PROCESS ING UNITS

The DACS consists of the COTS software product Tuxedo and SAIC-developed

components. This chapter describes the building blocks of Tuxedo used by the

DACS. Table 2 maps the Tuxedo components described in this chapter to the SAIC-

developed components. The mapping implies either direct or indirect interaction

between the components. The type of interaction is specified by a set of symbols

that are defined in the table.

TUXEDO COMPONENTS OF DACS

L i s tene r Daemons (t l i s t en , t agent)

Listener daemons are processes that run in the background on each DACS

machine. Listener daemons are started before and independently of the rest of the

distributed application to support the initial application boot on each machine (the

bootstrapping of the application).

If an application is distributed, like the DACS for automatic processing, a Tuxedo

daemon, tlisten, maintains the network connections among the various machines

that are part of the application by listening on a particular port. One and only one

tlisten process must be running on each machine in a distributed application at all

times. Without tlisten, a machine is not accessible for requests to boot servers.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

39
ID

C
-7

.3
.1

 Ju
n

e
 2

0
0

1

D
istrib

u
te

d
 A

p
p

lic
a

tio
n

 C
o

n
tro

l S
y

ste
m

 (D
A

C
S

)

▼

C
h

a
p

te
r 3

:

T
u

x
e

d
o

 C
o

m
p

o
n

e
n

ts
 a

n
d

C
o

n
c
e

p
ts

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

3

libipc,
dman,
birdie tuxpad4

Sn/Rn

Mc

Mt

Eq/Dq

Es/Er

I

Ls

Lt

Sq
TABLE 2: MAP OF TUXEDO COMPONENTS TO SAIC DACS COMPONENTS1

Tuxedo
Component

Data
Monitor2 scheduler schedclient tuxshell

dbserver,
interval_
router

recycler
_server

WorkFlow,
SendMessage

tlisten/
tagent5

Bs Bs Bs Bs Bs

BRIDGE6 Sn/Rn Sn/Rn Sn/Rn Sn/Rn Sn/Rn Sn/Rn Sn

BBL/DBBL Ms Ms Mc Ms Ms Ms Mc

TMS/
TMS_QM7

Mt Mt Mt Mt Mt8 Mt Mt

TMQUEUE Eq Eq/Dq Eq/Dq Eq Eq9 Eq Eq

TMQFOR-
WARD

Fs Fs Fs

TMUSREVT Es

IPC
resources

I I I I I I I

ubbcon-
fig/tux-
config10

Ds Ds Ds Ds Ds

user logs Ls Ls Ls Ls Ls Ls Ls

transaction
logs

Lt Lt Lt Lt Lt Lt Lt

queue
space

Sq Sq Sq Sq Sq Sq Sq

 Ju
n

e
 2

0
0

1
 ID

C
-7

.3
.1

 D
istrib

u
te

d
 A

p
p

lic
a

tio
n

 C
o

n
tro

l S
y

ste
m

 (D
A

C
S

)

▼

C
h

a
p

te
r 3

:

T
u

x
e

d
o

 C
o

m
p

o
n

e
n

ts
 a

n
d

C

o
n

c
e

p
ts

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

40

Sm

Gc

Aa Aa

Aq

agement)

s, machines, and so on)
es)

Get_server.

TABLE 2: MAP OF TUXEDO COMPONENTS TO SAIC DACS COMPONENTS1 (CONTINUED)

Tuxedo
Component

Data
Monitor2 scheduler schedclient tuxshell

dbserver,
interval_
router

recycler
_server

WorkFlow,
SendMessage3

libipc,
dman,
birdie tuxpad4
queues Sm Sm Sm Sm Sm Sm Sm

tmloadcf

tmunloadcf

tmadmin Aa Aa Aa Aa Aa Aa Aa

qmadmin

1. Interaction Symbol Definitions:
Bs (Boots the server)
Sn/Rn (Sends message over network for server/Receives message via network for server)
Ms/Mc (Monitors the server with process management/Monitors the client with no process man
Mt (Manages servers and clients queue transactions)
Eq/Dq (Enqueues message for server or client/dequeues message for server or client)
Fs (Fowards queue-based service call within a queue-based transaction)
Es/Er (Sends event message for client or server/Receives event message for client or server)
I (Sends, receives, and stores local messages and state for server and client using IPC resources)
Ds (Defines server to the application in the ubbconfig/tuxconfig files)
Ls (Logs system-level server or client messages to disk)
Lt (Logs server and client transactions to disk)
Sq (Stores servers’ and clients’ queues)
Sm (Stores server and client queue messages)
Gc (Generates text version of system configuration that can be parsed for current state of server
Aa (Administers the application including starting, stopping, and monitoring servers and machin
Aq (Administers Tuxedo queuing)

2. Data Monitors include five servers: tis_server, tiseg_server, ticron_server, tin_server, and Wave

3. Only SendMessage interacts directly with Tuxedo; WorkFlow is strictly a database application.

41
ID

C
-7

.3
.1

 Ju
n

e
 2

0
0

1

D
istrib

u
te

d
 A

p
p

lic
a

tio
n

 C
o

n
tro

l S
y

ste
m

 (D
A

C
S

)

▼

C
h

a
p

te
r 3

:

T
u

x
e

d
o

 C
o

m
p

o
n

e
n

ts
 a

n
d

C
o

n
c
e

p
ts

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

4. tuxpad includes the five scripts: tuxpad, operate_admin, schedule_it, qinfo, and msg_window. Only qinfo uses qmadmin.

atic Tuxedo control.

. tuxpad scripts execute
 running Tuxedo applica-

S components.

C clients are not defined
5. SAIC-supplied DACS servers are started by tlisten (via tagent) under Tuxedo operator control or under autom

6. All servers and clients (SAIC or Tuxedo supplied) rely upon BRIDGE services for inter-machine communication
Tuxedo-supplied and DACS-supplied utilities and clients, but tuxpad scripts are not directly connected to the
tion.

7. Interaction with the Tuxedo transaction managers is indirect and is handled by Tuxedo on behalf of SAIC DAC

8. Queuing transaction is applicable only to interval_router.

9. Enqueue operation is applicable only to interval_router.

10. The ubbconfig/tuxconfig defines IDC servers that are run and managed by the Tuxedo application. ID
in application configuration.

42

▼

Chapter 3:

Tuxedo Components and
Concepts

S o f t w a r e
I D C D O C U M E N T A T I O N
The tlisten process is the parent to all Tuxedo servers; its child processes inherit its

user identifier (UID), group identifier (GID), and environment. This feature allows

the DACS to run under a distinct UID and environment on each machine, provided

tlisten is started by the user with this UID, in this environment, and the distinct

UIDs have been specified in the *MACHINES section of the ubbconfig file.

To launch other servers, tlisten uses tagent, which is supplied by Tuxedo. In con-

trast to tlisten, tagent is only launched on demand and promptly exits after com-

pleting its task.

Admin i s t r a t i ve Se rve r s

Administrative servers are Tuxedo-supplied servers, which implement the funda-

mental elements and infrastructure of the distributed application. These include

network-based message passing and management of the state of the distributed

application, distributed transaction management, and queuing services.

BSBRIDGE and BR IDGE

The bootstrap bridge BSBRIDGE is launched by tlisten when the user boots the

administrative servers on a machine. BSBRIDGE prepares the launch of the perma-

nent BRIDGE and exits as soon as BRIDGE has been established.

BRIDGE manages the exchange of all information between machines (such as the

passing of messages). BRIDGE remains in the process table until the application is

shut down (completely or on the particular machine). If BRIDGE crashes or is termi-

nated accidentally, the machine is partitioned (can no longer be accessed from

other DACS machines via IPC resources, BRIDGE, and BBL) and operator interven-

tion is required to restore processing on the machine.

BBL/DBBL

The Bulletin Board Liaison (BBL) generates and manages the “Bulletin Board.” The

Bulletin Board is a section of shared memory in which Tuxedo stores the current

state of the application. One copy of the Bulletin Board is on each machine. BBL is
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Tuxedo Components and
Concepts
launched on each machine after the BRIDGE has been established. It remains in the

process table until the application is shut down (completely or on the particular

machine).

DBBL generates and manages the “Distinguished Bulletin Board,” which exists

only on the Master machine. DBBL is launched on the Master machine at boot and

remains in the process table until the application is shut down. The DBBL keeps all

BBLs synchronized so that all machines are in a consistent state across the distrib-

uted system. The DBBL automatically restarts any BBL in the case of a crash or

accidental kill. The BBL on the Master machine automatically restarts the DBBL

upon any failure or crash of the DBBL. When the Master machine is properly

migrated to the backup Master machine, the DBBL is also migrated to the new

Master machine.

App l i ca t ion Se rve r s

Application servers are Tuxedo-supplied servers, which include application-level

infrastructure and services that are necessary for many distributed processing

applications. The Tuxedo-supplied infrastructure and services include distributed

transaction management, reliable disk-based queuing services, and event message

passing services.

TMS/TMS_QM

These application servers manage transactions including the create, commit, roll-

back, abort, and timeout transactional commands or elements. For each server

group the system automatically boots two TMSs (Transaction Manager Servers),

and for the server groups operating on qspaces the system boots two TMS_QMs

(TMS for Queue Management).
43

i o n C o n t r o l S y s t e m (D A C S)

1

44

▼

Chapter 3:

Tuxedo Components and
Concepts

S o f t w a r e
I D C D O C U M E N T A T I O N
TMQUEUE

TMQUEUE enqueues and dequeues messages from a qspace for other servers (for

example, for the data monitors). Each qspace must have at least one instance of

TMQUEUE. At least one backup instance of TMQUEUE per qspace is recom-

mended.

TMQFORWARD

The forwarding agent, TMQFORWARD, dequeues messages from a specific disk

queue and sends them for processing to a server that advertises the corresponding

service. By convention, queue names and service names are identical. In the IDC

application the servers advertising processing services are various instances of tux-

shell, the general application server.1 tuxshell is discussed in “Chapter 4: Detailed

Design” on page 47.

Because TMQFORWARD works in a transactional mode, it does not commit to

dequeueing messages from a queue until the server signals success. Upon any fail-

ure, or if a configured time-out value (-t on the TMQFORWARD command line in

the ubbconfig file) is reached, TMQFORWARD terminates the transaction,

requeues the message to the top of the originating queue, and increases the retry

count. This recycling action continues until a retry threshold (set at queue creation

time) has been exceeded, at which point TMQFORWARD drops the message. If all

servers advertising the service are busy, TMQFORWARD waits for one to become

available. If the service is not being advertised, TMQFORWARD enqueues the mes-

sage into the error queue.

TMSYSEVT, TMUSREVT

TMSYSEVT and TMUSREVT are servers that act as event brokers. These servers

allow communication between application servers and clients and are used only in

the interactive DACS application.

1. TMQFORWARD can call any server that advertises the same server name as the name of the queue that
TMQFORWARD monitors. The DACS uses TMQFORWARDs that only call tuxshell servers.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Tuxedo Components and
Concepts
I PC Resources

Tuxedo uses several IPC resources. These are shared memory, message queues,

and semaphores. These resources must be sized correctly within the operating sys-

tem (in the /etc/system file) and are dynamically allocated and freed by Tuxedo

at run-time.

Spec ia l F i l e s

ubbconfig / tuxconfig

The binary tuxconfig file contains the complete configuration of the application

in machine-readable form. The Tuxedo operator on the Master machine generates

this file by compiling the text file, ubbconfig, using the command tmloadcf.

The Syntax is checked before the compilation. At boot time, the tuxconfig

binary file is then automatically propagated to all machines in the application. The

current state of the configuration of the application can be observed using the

command, tmunloadcf, or with the tuxpad GUI.

User Logs

All Tuxedo processes write routine messages, warnings, and error messages to

ASCII user log files ULOG.mmddyy (with mmddyy representing month, day, and

year). The log files are kept on a local disk partition for each machine to avoid los-

ing logs or delaying processing due to network problems.

Transac t ion Logs

Tuxedo tracks all currently open transactions on all machines by recording transac-

tion states in tlog files. Consequently, open transactions are not lost, even if a

machine crashes. The tlog files are binary and have the internal structure of a

“Tuxedo device.”
45

i o n C o n t r o l S y s t e m (D A C S)

1

46

▼

Chapter 3:

Tuxedo Components and
Concepts

S o f t w a r e
I D C D O C U M E N T A T I O N
Queue Spaces and Queues

The DACS uses the Tuxedo queuing system to store processing requests that have

been issued, for example, by a data monitor, but have not yet been executed.

These process requests are stored as messages in disk queues. Each queue holds

requests for a certain service, for example GAassoc-sel1 or DFX-recall, where the

service name matches the queue name. A queue space (or qspace in Tuxedo litera-

ture) is a collection of queues. The automated system of the IDC application soft-

ware works with two qspaces, a primary and a backup, on two different machines,

with dozens of queues in each qspace.

Ut i l i t y P rog rams

tmloadc f / tmun loadc f

The program tmloadcf loads (converts) Tuxedo DACS configuration from text file

to binary, machine-readable form. The program tmunloadcf unloads (converts) the

binary, machine-readable form back to a text file.

tmadmin

tmadmin is a command line utility that provides monitoring and control of the

entire application. This Tuxedo client reads from and writes to the BBL running on

the master machine to query and alter the distributed application.

qmadmin

qmadmin is a command line utility that provides monitoring and control of a disk

qspace. This Tuxedo client creates, reads from, and writes to a qspace on a Tuxedo

queue host machine.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 4: De ta i l ed Des i gn

This chapter describes the detailed design of the SAIC-developed DACS CSCs

(non-COTS DACS) and includes the following topics:

■ Data Flow Model

■ Processing Units

■ Database Description
i o n C o n t r o l S y s t e m (D A C S)

1 47

S o f t w a r e
I D C D O C U M E N T A T I O N

48
Chapter 4: De ta i l ed Des i gn

This chapter introduces DACS servers, clients, and auxiliary programs that are part

of the IDC software and have been developed and supplied by the PIDC. The pur-

pose of this chapter is to describe the basic design of all SAIC-developed compo-

nents. Operation of these components is described in [IDC6.5.2Rev0.1], and man

pages describe all parameters that can be used to control and modify functions

within the components. The first section, Data Flow Model, gives an overview of

the interrelationships between the individual CSCs, which are described in detail in

the Processing Units section.

DATA FLOW MODEL

In the context of Automatic Processing, the DACS includes CSCs for the following

functions:

■ Data monitoring

■ Creation of pipeline processing sequences

■ Centralized scheduling of the data monitoring servers

■ Generalized execution and monitoring of Automatic Processing applica-

tions

■ Centralized database updates

■ Host-based routing of pipeline processing sequences by data source

■ Automatic retries of failed pipeline sequences following system-level

errors

■ Interactive graphical presentation of all pipeline processing intervals

including support for on-demand reprocessing
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
CSCs are also included for the operation of the DACS for Automatic Processing via

several convenient GUI-based operator consoles.

In the context of Interactive Processing, the DACS includes CSCs for API level mes-

sage passing between applications in the Interactive Processing CSCI as well as a

GUI-based application for the monitoring of all interactive applications and mes-

sages within an interactive session. This latter CSC includes message-based

demand execution, automatic execution, and user-assisted execution and termina-

tion of interactive applications within the session.

Figure 14 shows the data flow among the DACS CSCs for Automatic Processing.

Tuxedo provides the reliable distributed processing infrastructure for DACS includ-

ing reliable queuing, transactions, and process monitoring (bottom bar in Figure

14). DACS is controlled by the system operator through the centralized operator

GUI tuxpad (a). Operator control includes complete DACS bootup or shutdown;

bootup and shutdown on a machine basis, a process-group basis, or a process-

server basis; control of the DACS scheduling system; and monitoring of Tuxedo

queues. The DACS scheduling system is managed by schedclient (process 1), which

is used to send commands1 to the scheduling server, scheduler (process 2). The

operational database is monitored by the DACS data monitor servers such as

tis_server (process 3) in a recurring attempt to create processing intervals subject to

data availability. Confirmation of sufficient data results in new interval information

that is inserted into both the database and Tuxedo queues. The enqueues are

either directly initiated by the data monitor server, or, optionally, the interval_router

server can enqueue the interval data into one queue from a set of possible queues

as a function of the interval name (process 4). System operators can use the Work-

Flow application to monitor the progress of Automatic Processing (process 9),

which renders database time interval states as colored bricks.

1. tuxpad is the most typical interface to schedclient.
49

i o n C o n t r o l S y s t e m (D A C S)

1

 Ju
n

e
 2

0
0

1
 ID

C
-7

.3
.1

 D
istrib

u
te

d
 A

p
p

lic
a

tio
n

 C
o

n
tro

l S
y

ste
m

 (D
A

C
S

)

▼

C
h

a
p

te
r 4

:

D
e

ta
ile

d
 D

e
s
ig

n

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

50

tis_server

DFXI

dbserver

3

4

...

7

schedclient

1

WorkFlow

9

waveformsD

scheduler

2

)

tuxpad

a

operationsDb

operationsDb

operationsDb
FIGURE 14. DATA FLOW OF DACS CSCS FOR AUTOMATIC PROCESSING

DFX

tuxshell

interval_router

...DFX DFXn

TMQFORWARD

yes
success?

failed

StaPro

no

return code

5

6

Retry

8

recyler_server

11

errors

TMQFORWARD

10

recyler_server

Tuxedo
queues

Tuxedo queuing, transactions, process monitoring (runs on every host

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
The Tuxedo queue forwarder, TMQFORWARD, passes the interval data to tuxshell

as part of a service call (processes 5 and 6 in Figure 14 on page 50). The general-

ized processing server tuxshell calls one or more processing applications (for exam-

ple, DFX) to send the processing interval to the desired/requested automatic

processing task (process 8 in Figure 14 on page 50). tuxshell manages the execu-

tion of the processing task, handling a successful or failed run. Failed processing of

an interval results in a transaction rollback of the queue message by TMQFOR-

WARD. TMQFORWARD initiates reprocessing of the interval, which repeats the

queue forwarding sequence (processes 5–8 in Figure 14 on page 50). Successful

processing of an interval results in an enqueue of an updated message into another

downstream Tuxedo queue (for example, StaPro) and a transactional commit of

the original queue message dequeued by TMQFORWARD. The downstream Tux-

edo queue manages the next step in the pipeline (processing sequence), which

duplicates the queue forwarding sequence (processes 5–8 in Figure 14). tuxshell

updates the interval data2 in the database by sending an updated interval state to

dbserver, which in turn issues the actual database update command to the ORA-

CLE database (process 7 in Figure 14 on page 50). Queue intervals that failed due

to system errors (for example, a machine crash) and have been directed to a sys-

tem-wide error queue are automatically recycled back into the appropriate Tuxedo

message queue by recycler_server (process 11 in Figure 14 on page 50).

Figure 15 shows the data flow among the DACS CSCs for Interactive Processing.

Tuxedo provides the reliable message passing infrastructure for the DACS including

reliable queuing and process monitoring (process 3). libipc provides the asynchro-

nous message passing among the Interactive Tools within the Interactive Process-

ing. This library is linked into all Interactive Processing clients (for example, ARS

and dman) and is not explicitly listed in the figure. Actions within the interactive

session are started by an analyst. The analyst either explicitly starts the analyst

review station tool, ARS (process 2) or it is automatically started by dman, the

DACS interactive session manager client (process 1).3 Storing messages within a

disk-based Tuxedo queue ensures that the messaging is asynchronous because the

message send and receive are part of separate queuing operations and transac-

2. dbserver can update interval.state or request.state.
51

i o n C o n t r o l S y s t e m (D A C S)

1

52

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
tions. Asynchronous messaging allows for one Interactive Tool (for example, ARS,

process 2) to send a message to another Interactive Tool that is not currently run-

ning. XkfDisplay is used as an example in Figure 15, and similar control and data

flow applies to other Interactive Tools. The dman client provides a demand execu-

tion feature, which starts an interactive client that is not already running and has a

pending message (process 4). dman tracks all message traffic through Tuxedo IPC

events, which are automatically broadcast to dman via the libipc message send and

receive API calls that the Interactive Tools use. Access to Automatic Processing is

provided for the purpose of interactive recall processing (process 2 and processes

5–7).4 The TMQFORWARD/tuxshell configuration for managing Interactive Pro-

cessing applications (processes 5–7) works in a similar but not identical manner

with the DACS for Automatic Processing. In Interactive Processing, TMQFOR-

WARD calls a tuxshell server within a transaction; however, the processing applica-

tion status, success or fail, is sent back to the calling client via a libipc message

(process 6). In addition, tuxshell does not attempt an interval.state update in the

database because this processing is on-the-fly and is not represented as an interval

in the database (the calling client, ARS, does not insert an interval into the data-

base).

3. The interactive session can be managed by the analyst_log GUI application (not shown in Figure 15).
This application manages analyst review by assigning blocks of time to analysts for analysis. This applica-
tion can optionally start dman.

4. The label interactive recall processing (process 7 in Figure 15) refers generally to the various types of
Automatic Processing that are used within Interactive Processing. These include interactive beaming
(BOTF), interactive seismic recall (RSEISMO), interactive hydro recall (RHYDRO), and interactive auxil-
iary data request (IADR).
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design

FIGURE 15. CONTROL AND DATA FLOW OF DACS CSCS FOR INTERACTIVE
PROCESSING

ARS

2

operationsDbXfkDisplay

4

TMQFORWARD

5

tuxshell

6

• Display session clients
dman

• Demand execution
• Message monitoring

1

analyst

a

XfkDisplay

ARSBOTF

Start
dman

Start
ARS

automatic start of ARS
(optional)

IPC message
for XfkDisplay

XfkDisplay
request event

Start
XfkDisplay

BOTF
acknowledgement

XfkDisplay IPC result/
acknowledgement

XfkDisplay
event

queuing,
Tuxedo

events, process
monitoring

3

interactive
DFX

recall
processing

7

XfkDisplay
result

Retrieve
XfkDisplay

message
53

i o n C o n t r o l S y s t e m (D A C S)

1

54

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
PROCESS ING UNITS

SAIC DACS CSCs consist of the following processing units:

■ Data monitor servers: tis_server, tiseg_server, ticron_server, tin_server, and

WaveGet_server

■ scheduler/schedclient

■ tuxshell

■ dbserver, interval_router, recycler_server

■ WorkFlow, SendMessage, and ProcessInterval

■ libipc, dman, and birdie

■ tuxpad, operate_admin, schedule_it, quinfo, and msg_window

The following paragraphs describe the design of these units, including any con-

straints or unusual features in the design. The logic of the software and any appli-

cable procedural commands are also provided.

Data Mon i to r Se rve r s

The DACS data monitor servers satisfy system requirements to monitor data avail-

ability to initiate automated pipeline processing as the availability criteria are met

(Figure 16). The data monitor servers (tis_server, tiseg_server, ticron_server,

tin_server, and WaveGet_server) share the following general design features:

■ Initiate a processing cycle when called by scheduler.

■ Apply the availability criteria using the database, and create or update

data intervals inserting or updating rows in the interval or request table

depending on the availability and timeliness of the data being assessed.

■ Enqueue a message into a Tuxedo queue for 1) each new interval created

with state queued and 2) each existing interval for which the state is

updated from skipped to queued to initiate processing of an automated

pipeline.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
■ Return an acknowledgment of completion of the processing cycle to

scheduler by sending a SETTIME command to scheduler (perform an

enqueue command to the scheduler command queue; see Figure 17 on

page 56).

FIGURE 16. DATA MONITOR CONTEXT

(schedule_it)
tuxpad

scheduler

operationsDb

Tuxedo queues
(DFX, GA, REB, EVCH, dispatch, and so on)

user parametersD

data monitor

3

wfdisc, request, interval
(query, insert, update)

2

1

55

i o n C o n t r o l S y s t e m (D A C S)

1

56

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N

FIGURE 17. DATA MONITOR ACKNOWLEDGEMENT TO SCHEDULING SYSTEM

All of the data monitors are database applications, and all monitoring is based

upon periodic polling of the database to check for availability based on varying cri-

teria. Different data monitors are used to create different classes of intervals. User

parameters define the queries used to check for the availability of data that each

data monitor server is designed to assess. tis_server creates detection processing

intervals based upon the availability of new continuous station data. tiseg_server

creates detection processing intervals based upon the availability of new auxiliary

seismic station data. ticron_server creates network processing intervals on a regular

basis and of a fixed size. tin_server creates intervals of varying type based upon a

trade-off between data availability and elapsed time. WaveGet_server initiates pro-

cessing to acquire auxiliary station waveforms based upon requests for such data.

SE
TT

IM
E

C
om

m
an

ds

sched-command

SETTIME commands – acknowledge last scheduler
call and schedule next

scheduler

1

WaveGet_server

2

tis_server

3

tiseg_server

4

ticron_server

5

tin_server

6

 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
t i s _ se rve r

tis_server creates and updates processing intervals of class TI/S for processing data

from continuously transmitting stations. tis_server forms new candidate intervals

based upon the timely arrival of new station data and updates existing intervals

that were previously skipped due to incomplete or nonexistent station data.

The data flow for tis_server is shown in Figure 18. tis_server creates and updates

intervals for all stations specified by the user parameters. The candidate interval

check attempts to form a new interval for each station where the interval start time

and end time are current. tis_server attempts to form a column of new intervals

that would appear on the right side of the WorkFlow display (see Figure 27 on

page 95). Candidate intervals are stored in a temporary, memory-based list during

each tis_server cycle (M1). The candidate interval for each station is assessed for

data coverage, and the interval is created if a sufficient percentage of overlapping

station channels has arrived. The number of overlapping channels and percentage

threshold is defined by the user parameters.
57

i o n C o n t r o l S y s t e m (D A C S)

1

58

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N

FIGURE 18. TIS_SERVER DATA FLOW

data
Check

availability

2

Main Driver

1

operationsDb

algorithm

Apply

3

affiliation, interval,
timestamp

candidate
M1 intervals

wfdisc

no yes
success ?

DFX, REB,...

created
M2 intervals

commit
database

6

rollback
database

5

 write, and send
Update or sort,

 intervals
(one

transaction)

4

create/update intervals

Reschedule

scheduler

a

user parametersD

coverage

skipped
intervals
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
The data coverage algorithm accumulates the number of seconds of overlapping

channels for each station and then calculates a coverage percentage. The coverage

percentage is compared to the user-specified threshold value, and if sufficient data

are found, a new interval is created and stored in memory (M2 in Figure 18). The

new interval state is set to queued. A message containing information about the

interval is enqueued into a Tuxedo queue that initiates pipeline processing. If the

threshold is not exceeded, interval.state is set to skipped, and the interval is not

queued for processing.5 Figure 19 shows the logic used to form intervals for cur-

rent data and check for skipped data. Candidate intervals of user-specified length

are formed by tis_server between the end of the last existing time interval in the

interval table (yellow brick, see “Current Data” in Figure 19) and the end of the

newest data record in the wfdisc table (black bars, see “Current Data” in Figure 19)

for a particular station (white brick candidate intervals, see “Current Data” in Fig-

ure 19). These intervals are inserted into the interval table by tis_server (see “Cur-

rent Data” in Figure 19).

5. A skipped interval is created only if a queued interval exists (or has been confirmed) later in time than
the skipped interval. That is, a skipped interval is never a leading interval. As a result, a skipped interval
following a station outage only appears after the station resumes transmitting data, which results in one
or more new queued intervals.
59

i o n C o n t r o l S y s t e m (D A C S)

1

60

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 19. CURRENT DATA AND SKIPPED INTERVAL CHECKS

Candidate intervals that were not enqueued for processing by tis_server because

the threshold value was not exceeded are known as “skipped” intervals. However,

late-arriving data may complete an interval and tis_server may check the data con-

tents of all skipped intervals (light gray bricks, see “Skipped Interval Check” in Fig-

ure 19) to see if enough data have been received to surpass the threshold

percentage (black bars, see “Skipped Interval Check” in Figure 19). If a skipped

interval for which the threshold percentage has been exceeded is found,

interval.state is updated to queued, (yellow bricks–”new intervals after wfdisc

check,” see “Skipped Interval Check” in Figure 19) and a corresponding message

is enqueued into a Tuxedo queue.

interval table

current
time

wfdisc table

candidate intervals

new intervals after wfdisc check

Current Data

Skipped Interval Check

current
time

max (end time)
from interval

max (end time)
from wfdisc

max (end time)
from wfdisc

max (end time)
from interval

interval table

wfdisc table

candidate intervals

new intervals after wfdisc check

interval table

new intervals

current
time

max (end time)
from interval

current time
setback

Setback Time
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
tis_server can create new intervals or update previously skipped intervals based

only upon the addition of other intervals in the database. Therefore, tis_server is

not necessarily dependent on wfdiscs. More generally, tis_server requires start time

and end time data. The start time and end time could be related to database

wfdiscs or just as easily to the start time and end time of database intervals. There-

fore, it is possible to specify query parameters that are entirely based upon the

interval table whereby tis_server forms new intervals based upon the progress of

other related intervals. This generalized use of tis_server is employed in a number

of cases to form pipeline processing sequences based upon the existence of spe-

cific interval states within a specified range of time. The design of tis_server

addresses a number of complexities specifically related to continuous station data

transmission (wfdisc-based monitoring). Therefore, the more general interval-

based monitoring uses of tis_server exercise a relatively small percentage of the

server’s features.

t i seg_se rve r

tiseg_server creates intervals of the class TI/B that correspond to relatively short

segments of irregular duration from auxiliary seismic stations. The created intervals

are enqueued into a Tuxedo queue to initiate detection and station processing.

tiseg_server periodically checks the wfdisc table for new entries originating from

seismic stations. Each auxiliary seismic station has a designated monitor channel

that serves as the time reference channel for forming the TI/B intervals in the inter-

val table. Complete (queued) intervals are formed in the interval table when the

monitor channel is found along with all other expected channels (Figure 20).

Incomplete (partial) intervals are formed when the monitor channel is found in

the absence of a specified minimum number of related station channels. Partial

intervals in the interval table are completed (updated to queued) when the mini-

mum number of missing channels can be found within a user-specified elapsed

time period.
61

i o n C o n t r o l S y s t e m (D A C S)

1

62

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N

FIGURE 20. TISEG_SERVER DATA FLOW

updated
M1 partial intervals

Main Driver

1

partial intervalsM2

full intervalsM3

interval
Apply partial

check

2

timestamp
Update

8

partial
Create

interval

5

DFX

minimum
Check

channels

4

intervals (one
Write and send

transaction)

7

by station;
Sort wfdisc

check for
monitor
channel

3

Reschedule

scheduler

a

user parametersD

operationsDb

intervals

Insert
new

partial

6

operationsDb
(existing intervals)

timestamp

wfdiscs
intervals

partial
intervals

intervals
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
t i c ron_se rve r

ticron_server creates fixed-length intervals of the class TI/N based on a fixed

elapsed time (setback) prior to the current real time. Created intervals are inserted

into the interval table and a Tuxedo queue to initiate network processing (Figure

21). The length of the intervals is nominally set to 20 minutes, but this parameter

and other parameters are user configurable.

Network processing is performed several times at successively greater time delays

from the current time to produce the various bulletin products of the IDC. To main-

tain the delay in processing, a setback time is used. The bottom portion of Figure

19 on page 60 shows the setback criterion used by ticron_server (yellow bricks–

”new intervals,” see “Setback Time” in Figure 19 on page 60). The effect of apply-

ing this criterion is that network processing in the SEL1, SEL2, and SEL3 pipelines

maintains constant delays (currently 1 hour 20 min, 5 hours 20 min, and 11 hours

20 min, respectively) relative to the current time.
63

i o n C o n t r o l S y s t e m (D A C S)

1

64

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N

FIGURE 21. TICRON_SERVER DATA FLOW

t i n _ se rve r

tin_server creates intervals based upon a trade-off between data availability and

elapsed time. Intervals of class TI/N6 are inserted into the interval table, and the

interval information is enqueued into a Tuxedo queue to initiate pipeline process-

ing. The data availability criterion is based upon the number of completed intervals

operationsDb

timestamp
Update

6

Main Driver

1

next start-time
Determine

2

end-time
Compute

3

multiple target
Break into

size intervals

4

intervalsM1

SEL1/2/3

Reschedule

scheduler

a

user parametersD

timestamp

send intervals
Write and

(one transaction)

5

interval
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
for a given class or group of processing (processes 5–7 in Figure 22). The process-

ing class or group is flexible in that tin_server exclusively relies on an integer

returned from a user-defined SQL query. Thus tin_server is not concerned with net-

work or station affiliations, and the user-defined data count query must map the

completion status of the monitored station set or group to an integer number. A

dedicated instance of tin_server is required for each processing group or class (for

example, three hydroacoustic groups require three dedicated tin_server instances).

The data availability versus time criteria are based on two user-defined value arrays

of equal dimension. These arrays define the minimum number of data counts or

completions acceptable at a time elapsed relative to present time and the end time

of the last interval created. In general, the data count thresholds reduce and/or the

data completeness threshold is relaxed as elapsed time increases. If sufficient data

are confirmed, a complete interval is created and the interval information is

enqueued into a queue. If insufficient or no data are available after a defined

amount of time, a skipped interval is created. The end time of the created interval,

whether complete or skipped, defines the start time for the next interval’s elapsed

time measurement. The updating of skipped intervals is based upon a user-defined

SQL query. tin_server does not supply time values for substitution in the SQL

query. Skipped intervals returned from the query are updated to complete inter-

vals, and then enqueued into a queue (process 2).7

6. The IDC software uses tin_server to create intervals for Hydroacoustic Azimuth Estimation, which are
labeled with the class HAE. Explicit classes and states of intervals are configurable for each data monitor.
This document lists the generic names which coincide often, but not always, with explicit names.

7. There are few or no requirements for skipped interval processing for tin_server. The creation of skipped
intervals is intended primarily to keep interval creation current relative to present time, thereby avoiding
interval gaps or the stalling of interval creation due to delays or failure of the processing that is moni-
tored by tin_server.
65

i o n C o n t r o l S y s t e m (D A C S)

1

66

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 22. TIN_SERVER DATA FLOW

operationsDb

intervals
Process skipped

2

data count
Determine

via SQL

5

end-time
Compute

4

start-time for
Compute

new interval

3

count to time/
Compare data

data threshold
function

6

no

yes

completeskipped
forced no

yes

HAE interval
Create and send

(one transaction)

7

HAE

skipped
Create

interval

8

timestamp
Update

9

HAE

? ?

Main Driver

1

scheduler

a

user parametersD
timestamp

interval interval

Reschedule

operationsDb

timestamp

timestamp
interval

interval
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
WaveGet_ se rve r

WaveGet_server is a data monitor server that polls the request table for auxiliary-

station-waveform requests and initiates actions to acquire the requested wave-

forms. The actions include IPC message enqueues into one or more Tuxedo queues

and the updating of the state of the revised requests in the database. The IPC mes-

sages consist of the updated request information. The enqueued messages initiate

pipeline processing that ultimately results in auxiliary waveform being requested by

the Retrieve Subsystem. WaveGet_server processes both new requests and previ-

ous requests that have failed to result in successful auxiliary waveform acquisition.

WaveGet_server provides standard mode and archival mode processing. Standard

mode processing operates on incomplete requests for data. Archival mode process-

ing operates on requests for which too many retrieval attempts have failed or too

much time has elapsed.

In standard mode processing, WaveGet_server sorts all active requests for data by

four different criteria. The first sort is by priority of request, the second is by trans-

fer method, the third is by station, and the fourth is by time.

WaveGet_server prioritizes the requests based upon a list of priority names defined

by the user parameters. The priority names define different request types, and

within each priority level the requests are grouped by transfer method. Within a

transfer method, the requests are sorted by station and by time. After all active

requests are sorted, one IPC message per request is enqueued into the configured

Tuxedo queue (process 4 in Figure 23).
67

i o n C o n t r o l S y s t e m (D A C S)

1

68

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N

FIGURE 23. WAVEGET_SERVER DATA FLOW

WaveGet_server manages the retry of previous failed requests. Failures are

detected by the DACS and recorded in the request table.8 WaveGet_server repro-

cesses previous failed attempts after a small time interval has elapsed.

waveget time
Compute

for request
table query

2

sort by
Query requests;

priorities

3

5

dispatch

updated
Write and send

requests (one
transaction)

4

sorted/
prioritized
request

M1

Main Driver

1
Reschedule

scheduler

a

user parametersD

operationsDb

Update
timestamp

timestamp

request

timestamp

request
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
In archival mode, WaveGet_server changes the state of selected entries in the

request table. The intent is to change the state of requests that have either too

many failures or are too old. The new state both prevents WaveGet_server standard

mode from considering these requests and provides a clear indication to an opera-

tor that the request is no longer being considered by WaveGet_server.

I nput /P rocess ing /Output

t i s _ se rve r

Figure 18 on page 58 shows data and processing flow for tis_server. tis_server

receives input from user-defined parameter files, the database, and the scheduler

server. The parameter files specify all processing details for a given instance of the

data monitor server. Details include database account, station names, database

queries, and interval coverage threshold values. The user parameters are used to

construct the recurring database queries to check or monitor the availability of new

station data. Initial database input to tis_server includes station and network affilia-

tions used to build a complete station, site, and channel table for all monitored sta-

tions.

tis_server creates and updates intervals for processing data from continuously

transmitting stations. tis_server forms new candidate intervals based upon the

timely arrival of new station data and updates existing intervals that were previ-

ously skipped due to incomplete or nonexistent station data.

tis_server generates output to log files, the database, Tuxedo queues, and the

scheduler server. Output to the database includes new intervals, be they incom-

plete (interval.state = skipped) or complete (interval.state = queued). Updates to

the database include previously skipped intervals updated to queued intervals fol-

lowing the verification of newly arrived data. tis_server also optionally supports

8. WaveGet_server detects Retrieve Subsystem request retrieve failures by querying the request.state and
request.statecount in the database. Depending on the state and number of failed requests (value of
request.statecount), WaveGet_server determines whether subsequent requests should be made or the
state should be updated to failed to terminate the request and eliminate it from consideration in future
WaveGet_server invocations.
69

i o n C o n t r o l S y s t e m (D A C S)

1

70

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
output to the timestamp table to track interval creation by station. However, in

practice, the timestamp updates are carried out by database triggers that update

this information based upon updates to the wfdisc table. (This performance optimi-

zation can be considered part of the tis_server design, but its implementation is

external to tis_server). Upon interval creation, tis_server enqueues a message con-

taining the interval information into a Tuxedo queue for initiation of a pipeline pro-

cessing sequence on the time interval. tis_server completes its interval creation

cycle by sending an acknowledgement SETTIME command to the scheduler server,

which results in rescheduling for the next tis_server service call.

t i seg_se rve r

Figure 20 on page 62 shows data and processing flow for tiseg_server. tiseg_server

receives input from user-defined parameter files, the database, and the scheduler

server. The parameter files specify all processing details for a given instance of the

data monitor server. Details include database account, auxiliary network, database

queries, and station- and time-based interval coverage values. The user parameters

are used to construct the recurring database queries to check or monitor the avail-

ability of new station data. Initial database input to tiseg_server includes an auxil-

iary network, which is used to build a complete station, site, and channel table for

all monitored auxiliary stations.

tiseg_server first carries out partial interval processing (process 2 in Figure 20 on

page 62). An attempt is made to declare each partial interval complete, querying

the database for data availability of the remaining channels for the auxiliary station

in question. Data completeness is defined by all remaining channels or some subset

subject to user-defined parameters. When the minimum number of auxiliary sta-

tion channels is confirmed, interval.state is updated to queued and the interval

information is enqueued to a Tuxedo queue (for example, DFX queue) to initiate

pipeline processing (process 7 in Figure 20 on page 62).

The second and primary processing task of tiseg_server is the interval creation algo-

rithm whereby complete and partial intervals are created. The interval creation

algorithm includes a sort of all wfdisc rows by station names (process 3 in Figure 20

on page 62) to organize interval creation and processing in station lexicographic
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
order. The availability of waveforms on the user-defined monitor channel results in

the creation of a TI/B interval. The interval is considered only partial if the monitor

channel is not joined by the minimum number of affiliated channels for the auxil-

iary station (process 5 in Figure 20 on page 62) in a check of criteria identical to the

partial interval check (process 2 in Figure 20 on page 62). If the monitor channel is

joined by the minimum number of affiliated channels for the auxiliary station, a

new row with state queued is inserted into the interval table, and the interval infor-

mation is enqueued into a Tuxedo queue (process 7 in Figure 20 on page 62).

tiseg_server generates output to log files, the database, Tuxedo queues, and the

scheduler server. Output to the database includes new intervals, both incomplete

(interval.state = partial) or complete (interval.state = queued). Updates to the

database include previously partial intervals updated to queued intervals following

the verification of newly arrived data. tiseg_server updates the timestamp table with

the current time to record the most recent time of a successful interval creation by

tiseg_server. Upon interval creation, tiseg_server enqueues a message containing

the interval information into a Tuxedo queue for initiation of a pipeline processing

sequence on the interval. tiseg_server completes its interval creation cycle by send-

ing an acknowledgement SETTIME command to the scheduler server, which results

in rescheduling for the next tiseg_server service call.

t i c ron_se rve r

Figure 21 on page 64 shows data and processing flow for ticron_server.

ticron_server receives input from user-defined parameter files, the database, and

the scheduler server. The parameter files specify all processing details for a given

instance of the data monitor server. Details include database account, class and

size of target intervals to be created (for example, SEL1, 20 minutes), database

queries, and time-based interval creation values (for example, the setback time).

The user parameters are used to construct the recurring database queries to deter-

mine the time and duration of the last interval class created. Initial database input

to ticron_server includes timestamp and interval information, which is used to build

new time interval(s) depending on when the last interval was created and the cur-

rent time.
71

i o n C o n t r o l S y s t e m (D A C S)

1

72

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
ticron_server processing is straightforward and creates intervals as a function of

time. The ticron_server interval creation algorithm includes determination of a start

time for the next interval it will create. This start time is a function of the most

recent end time of the last created interval/value noted optionally in the timestamp

table (process 2 in Figure 21 on page 64). Associated end times for each interval

are computed as a function of the target interval size and a user-defined time set-

back value (process 3 in Figure 20 on page 62). One or more intervals are created

by ticron_server depending on whether the computed new interval of time exceeds

the target interval length (process 4 in Figure 21 on page 64). Completed inter-

val(s) are written to the database and then enqueued into a Tuxedo queue to ini-

tiate pipeline processing of the intervals.

ticron_server generates output to log files, the database, Tuxedo queues, and the

scheduler server. Output to the database includes new intervals and updates to the

timestamp table. Upon interval creation, ticron_server enqueues a message contain-

ing interval information into a Tuxedo queue for initiation of a pipeline processing

sequence on the interval. ticron_server completes its interval creation cycle by

sending an acknowledgement SETTIME command to the scheduler server, which

results in rescheduling for the next ticron_server service call.

t i n _ se rve r

Figure 22 on page 66 shows data and processing flow for tin_server. tin_server

receives input from user-defined parameter files, the database, and the scheduler

server. The parameter files specify all processing details for a given instance of the

data monitor server. Details include database account, class, name, and size of tar-

get intervals to be created (for example, HAE, WAKE_GRP, 10 minutes), database

queries, and arrays of time and data count values. These values define the time/

data threshold function for interval creation. The user parameters are used to con-

struct the recurring database queries to determine the time and duration of the last

interval created so that the start time and end time of the next interval can be

established. Initial database input to tin_server includes timestamp and interval

information used to establish the times of the next interval.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
The tin_server interval creation algorithm creates a timely or current interval. The

interval is complete if a sufficient number of data counts versus elapsed time can

be confirmed. The interval is unresolved if insufficient data counts are present but

elapsed time has not run out. The interval is incomplete if insufficient data counts

cannot be confirmed following a maximum user-defined time lapse. All time-based

comparisons are relative to the present time and the end time of the last interval

created. tin_server computes the start time for the current interval as a function of

the last interval created, a value from the timestamp table, and a user-defined look-

back value (process 3 in Figure 22 on page 66). The timestamp value and lookback

value are generally only relevant if no previous intervals exist in the database such

as the case upon system initialization (when a new system is run for the first time).

The end time is computed as a function of the user-defined values for target inter-

val size and time boundary alignment. The latter feature allows for interval creation

that can be snapped to a timeline grid such that intervals fall evenly on the hour/

the selected minute interval (process 4 in Figure 22 on page 66). Having estab-

lished the candidate interval start and end time, the interval creation algorithm

proceeds to confirm the required data counts as a function of time (as described

above and shown in processes 5 and 6 in Figure 22 on page 66). The data count

query is user-defined and is usually targeted at a logical processing group such as a

network of seismic stations or a group of hydroacoustic sensors. Complete inter-

vals are created along with an enqueue into a Tuxedo queue as one logical transac-

tion (process 7 in Figure 22 on page 66). Following a successful complete interval

creation and enqueue, the end time of the interval is recorded in the timestamp

table (process 9 in Figure 22 on page 66). Incomplete intervals are created absent

an enqueue (process 8 in Figure 22 on page 66).

tin_server generates output to log files, the database, Tuxedo queues, and the

scheduler server. Output to the database includes the complete and incomplete

intervals and timestamp table updates. Upon interval creation, tin_server queues the

time interval information to a Tuxedo queue for initiation of a pipeline processing

sequence on the time interval. tin_server completes its interval creation cycle by

sending an acknowledgement SETTIME command to the scheduler server, which

results in rescheduling for the next tin_server service call.
73

i o n C o n t r o l S y s t e m (D A C S)

1

74

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
WaveGet_ se rve r

Figure 23 on page 68 shows data and processing flow for WaveGet_server.

WaveGet_server receives input from user-defined parameter files, the database,

and the scheduler server. The parameter files specify all processing details for a

given instance of the data monitor server. Details include database account, state

names used for query and update of the request table, database queries, and val-

ues for sorting and managing the requests. The user parameters are used to con-

struct the recurring database queries to determine if any requests should be passed

to the messaging system or if any requests should be declared failed and aborted

(so that no further data requests are attempted).

In standard mode processing WaveGet_server considers recent requests subject to

the three factors: maximum lookback, current time, and time of last run. Determi-

nation of the time interval is a function of a user-specified maximum lookback, cur-

rent time, and the most recent run of the WaveGet_server cycle, which is recorded

in the timestamp table (process 2 in Figure 23 on page 68). The time interval or

time period of interest is inserted into a user-specified request query, which

retrieves all requests (process 3 in Figure 23 on page 68). The user-specified query

is purposely flexible so that any practical query filters or clauses can be applied.

The retrieved requests are sorted according to four search criteria including a user-

specified priority and the request’s transfer method, name and time. The sorted list

is recorded in a memory-based list and is the central data structure for all server

operations (process 3 and M1 in Figure 23 on page 68). The sorted list is pruned of

any request names that are not defined in the user-defined list of station names.

The pruning involves updating the request states to a user-specified ignore state,

which removes the request from further consideration. The sorted list of requests is

updated in the database and sent to a Tuxedo queue as one global transaction

(processes 4 and 5 in Figure 23 on page 68).

In archival mode processing WaveGet_server will set request.state = failed for all

old requests that have not resulted in successful auxiliary waveform acquisition

within a user-specified time lookback and/or have failed an excessive number of

times.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
WaveGet_server generates output to log files, the database, Tuxedo queues, and

the scheduler server. Output to the database includes updates to the request table

and timestamp table. request table updates to state queued are coupled with

enqueues of the request information to a Tuxedo queue. The enqueue initiates the

pipeline processing sequence to retrieve the requested auxiliary waveform.

WaveGet_server completes its processing cycle by sending an acknowledgement

SETTIME command to the scheduler server, which results in rescheduling for the

next WaveGet_server service call.

Cont ro l

Tuxedo boots, monitors, and shuts down the data monitor servers: tis_server,

tiseg_server, ticron_server, tin_server, and WaveGet_server. Server booting is either

initiated by an operator directly using Tuxedo administrative commands or indi-

rectly via tuxpad, or, automatically via Tuxedo server monitoring. During Tuxedo

server monitoring servers are automatically restarted upon any failure. An operator

initiates the server shut down.

Control of the data monitor server function is largely defined by the user parame-

ters. However, the scheduling system enables an operator to start the data monitor

service on demand such that a data monitor cycle can be called at any time, other-

wise the data monitor service is automatically called by the scheduling system on a

recurring scheduled basis. In addition, the same interface allows for stalling and

unstalling data monitor service requests, which results in the ability to control

whether or not a data monitor server is active and able to initiate interval creation.

I n te r f aces

The data monitor servers are database applications, which receive input data from

the database, then exchange or store that data in internal data structures for vari-

ous types of interval- creation algorithms. The detailed process or control sequenc-

ing within each data monitor, including internal interfaces, is shown in each of the

data monitor server data flow diagrams (Figures 18–23).
75

i o n C o n t r o l S y s t e m (D A C S)

1

76

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Er ro r S ta tes

The data monitor servers can handle three primary failure modes: a spontaneous

data monitor server crash, a database server failure, and a Tuxedo queuing failure.

Attempts are made to automatically recover from each failure mode.

Spontaneous data monitor server crashing normally results from a previously unex-

ercised program defect or a system resource limit. Tuxedo automatically restarts

the data monitor servers upon server failure. Server failures due to system resource

limitations (for example, swap or virtual memory exceeded) can be more easily

recovered from than those from program defects because such a resource error

may be transient or resolved by operator intervention. In this case the failure

recovery is automatic for the data monitor server. Server failures due to a previ-

ously unknown program defect are typically more problematic because although

the program reboot is automatic, the program defect is often repeated, resulting in

an endless server reboot cycle.

The data monitor servers accommodate a variety of database server error condi-

tions. If the database server is unavailable, the data monitor server attempts to

reconnect for a maximum number of times during the current interval creation

cycle before giving up. This cycle is repeated during subsequent calls to the data

monitor server in an attempt to reconnect to the database server. In this scenario,

the data monitor servers never crash or terminate due to database server down-

time. General database query, insert, or update errors are handled via an attempt

to rollback as much of the interval creation cycle work, or progress as much as pos-

sible prior to ending the current interval creation cycle. Included in this error state

processing is an attempt to keep Tuxedo queue inserts and database inserts or

updates as one transaction such that the database operation(s) are not committed

until the Tuxedo enqueue(s) are successful. This is shown in all of the data monitor

data flow diagrams (Figures 18–23). Errors for all database failures are logged to

the data monitor log files.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
schedu le r / s chedc l i en t

scheduler and schedclient support the DACS scheduling system. scheduler satisfies

the requirement for a centralized server for automatic data monitor calls, and

schedclient satisfies the requirement for a tool for the centralized management of

the scheduling system. The DACS data monitor application servers (for example,

tis_server, WaveGet_server) await service calls from scheduler to carry out their data

monitoring service and return acknowledgments to scheduler following completion

of their service cycle. The scheduling system was designed to be fault tolerant. To

achieve this objective the system is based upon the reliable Tuxedo disk queuing

system.

The principal design decision involved the selection of either the database or the

Tuxedo queuing system as a stable storage resource. The database is a single point

of failure. The Tuxedo queuing system includes an automatic backup queuing with

some limitations. The state of the primary queuing system is frozen until recovery

by operator intervention. Such a scenario works for the DACS Automatic Process-

ing software where new interval creation and processing proceeds by using the

backup DACS qspace even though unfinished intervals are trapped in the primary

qspace until the primary queuing system is restored. This scenario is not sufficient

for the scheduling system because the scheduler state is frozen during queuing

system failure, and there is one and only one scheduling system state. As such, the

Tuxedo queuing system is also a single point of failure for the scheduling system.

After weighing various trade-offs, a decision was made to base the scheduling sys-

tem on the Tuxedo queuing system. Justifications for this decision included an

implementation that appeared to be more straightforward and consistent with the

rest of the Tuxedo-based DACS implementation and some promise for achieving

seamless fault tolerant in the future.9

9. Hardware solutions such as dual ported disk drives have been shown to provide seamless fault tolerance
within a Tuxedo queuing system.
77

i o n C o n t r o l S y s t e m (D A C S)

1

78

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
I nput /P rocess ing /Output

Figure 24 shows the design of the fault-tolerant scheduling system. The sequenced

queuing, transaction, and execution steps are numbered. The Tuxedo reliable

queuing system provides the foundation for the reliable scheduling system. The

queuing system consists of the built-in Tuxedo forwarding servers, TMQFOR-

WARD, as well as queues Q1 (schedule), Q2 (sched-command), and Q3 (sched-

result), the scheduler state, command, and result queues respectively. scheduler

and schedclient input, output, and control flow are also shown in the figure. How-

ever, the figure does not show that both the scheduler servers and schedclient

receive input from user parameters (via libpar).

The scheduler state consists of the table of scheduled services and their next due

time and other global state (for example, kick state). When this due time is equal

to current time, scheduler issues a service call to a server advertising the required

service. These services are typically advertised by data monitors. For example,

tis_server advertises services tis, tis-late, tis-verylate and others. The state table is

encapsulated in one Tuxedo queue element that is reliably maintained in the state

queue, Q1. The queue structure is based upon a Tuxedo Fielded Markup Language

(FML) message.

The state queue must be seeded with an initial scheduler table at least the first time

the system is started. This is accomplished by the schedclient init command.

This command empties the state queue, if necessary, and then enqueues the initial

state into the state queue, (step 110). Subsequent system restarts can optionally

issue another init command upon system bootup, or they can choose to pick up

exactly where the system left off, because the last scheduler state remains in the

state queue.

10. schedclient shuts down the TMQFORWARD server prior to dequeuing the scheduler state from the
state queue and then reboots the TMQFORWARD after enqueuing the new initial state into the sched-
uler state to complete the reset of the scheduling system. The TMQFORWARD server is shut down and
started through Tuxedo tmadmin commands that are generated and issued by schedclient. The TMQ-
FORWARD management is necessary to avoid race conditions whereby TMQFORWARD might
dequeue the scheduler state before schedclient, which would result in two (or more) scheduler states;
this would manifest in repeated and possibly conflicting scheduling calls to the data monitor servers.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
FIGURE 24. SCHEDULING SYSTEM DATA FLOW

TMQFORWARD

schedclient

Q2
sched-command

Q3
sched-result

Q1
schedule

Host C

scheduler

scheduler

Host B
scheduler

Host A

dequeue under global transaction, rollback possible
enqueue/dequeue

synchronous service call

asynchronous service call

QSPACE: scheduler, 3 queues
Q1: schedule, service/state table
Q2: sched-command, server commands
Q3: sched-result, command results

1

a

3

2

7

4

5

8

b

6

tuxpad

tiseg_server

ticron_server

tis_server
79

i o n C o n t r o l S y s t e m (D A C S)

1

80

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
The state queue consists of one and only one queue element, the scheduler state;

this is the key to the fault-tolerant design. TMQFORWARD starts a transaction,

(step 2), and then dequeues and forwards the queue message (the state) to one of

the scheduler servers running on any of several hosts, (step 3). It does not matter

which scheduler server receives the call because all servers are equally stateless

until they are passed state within the global transaction.

If one or more commands exist in the command queue they are dequeued, (step

4), and applied to the scheduler state, resulting in an updated state. This updated

state is requeued into the state queue, (step 7). At this point the state queue tech-

nically has two queue elements in it: the previous and the updated scheduler state.

However, neither queue element is visible to the rest of the system until the global

transaction is resolved by either commit or rollback, after which only one queue

element will remain in the state queue. If scheduler returns success to TMQFOR-

WARD, (step 3), following success of the updated requeue, (step 7), TMQFOR-

WARD will commit the global transaction. This commit operation results in the

commits of the original dequeue operation (step 2), after commits for the com-

mand(s) dequeued, (step 4), any results enqueued, (step 5), and the enqueue of

the updated state, (step 7). Otherwise, if scheduler returns fail to TMQFORWARD,

(step 3), TMQFORWARD rollsback the global transaction. This rollback operation

negates all queuing operations including any dequeues from the command queue,

(step 4), enqueues to the result queue, (step 5), requeues to the state queue, (step

7) and the original dequeue from the state queue, (step 2).

Prior to scheduler returning success to TMQFORWARD and final transaction com-

mit (step 7), data monitor servers are called for all services that are at or past this

scheduled time, (step 6). The data monitor service call is asynchronous and cannot

be rolled back; therefore it is not considered part of the global transaction. In prac-

tice, this limitation does not present a problem because the function of the sched-

uling system is to call the data monitor servers on schedule. Failure of a data

monitor service is outside the scope of the scheduling system design. The best

form of error handling is a repeated attempt to call the data monitor server. As

such, scheduler always schedules a subsequent call to the data monitor service

immediately after the service call. This worst case schedule time is typically set

beyond the time the service would next normally be called and is tunable via user
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
parameters. A successful data monitor service call completes with an acknowledg-

ment SETTIME command, (step 8 in Figure 24 on page 79), enqueued into the

command queue. This acknowledgment command results in an update of the next

scheduled time to call this data monitor service.

scheduler commands and results pass through the command and result queues.

The results of most commands are simply a boolean success or fail. The show com-

mand is an exception where scheduler returns the human readable listing of sched-

uled services. scheduler commands and results are matched by the Tuxedo queue-

based correlation identifier that is used by both scheduler and schedclient. schedcli-

ent polls the result queue, (step b in Figure 24 on page 79), and searches for the

matching result of the command that was enqueued into the command queue,

(step a in Figure 24 on page 79). scheduler commands, such as the SETTIME com-

mands originating from the data monitor applications (for example, tis_server),

(step 8 in Figure 24 on page 79), are sent with the TPNOREPLY flag set, which

means there will be no reply (no returned result in the result queue).

scheduler servers generate ouput to log files, Tuxedo queues, and Tuxedo servers.

The updated scheduling states are enqueued to the schedule queue (Q1 in Figure

24 on page 79). Output to Tuxedo services consists of service calls to data monitor

servers. schedclient generates output to the terminal or message window and to

the sched-command queue (Q2 in Figure 24 on page 79).

Cont ro l

scheduler start up and shut down are handled by Tuxedo because scheduler is a

Tuxedo application server. Start up upon system boot up is initiated by an operator

as is manual start up and shut down of one or more of the replicated scheduler

servers. However, Tuxedo actually handles process execution and termination.

Tuxedo also monitors scheduler servers and provides automatic restart upon any

unplanned server termination.

schedclient is always started as part of an operator request. The request can be

direct by submission of the schedclient command within a UNIX shell environment

or indirect by the operator GUI tuxpad (specifically by the schedule_it GUI).
81

i o n C o n t r o l S y s t e m (D A C S)

1

82

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
I n te r f aces

The interface to the scheduling system is through the schedclient application,

which sends commands to scheduler. Commands exist to initialize or re-initialize

the schedule service table (Q1 in Figure 24 on page 79), add new services, delete

existing services, stall services, unstall services, display the current schedule service

table, and enable or disable the scheduler server’s ability to call services. The sched-

ule commands sent by schedclient are passed to the scheduler server via the tpac-

all() Tuxedo API function for asynchronous service calls. The string-based

commands are packed into a Tuxedo STRING buffer, which is interpreted by sched-

uler. The scheduler server does not return any data to schedclient, but with the

show command scheduler enqueues the service list in text form to the result queue,

(step 5 in Figure 24 on page 79). schedclient polls the result queue waiting for the

show command result, (step b in Figure 24 on page 79).

In practice, schedclient commands are handled by the schedule_it GUI, which is

part of the tuxpad operator console, (tuxpad in Figure 24 on page 79).

Er ro r S ta tes

scheduler can fail during start up if the user parameter file is non-existent or con-

tains invalid settings. Start up errors are recorded in the local Tuxedo ULOG file of

the machine hosting the failed scheduler server. In general, the scheduling system

is designed to continue operation during system failures such as a Tuxedo queuing

system error, which may only be transient in nature. Because the schedule state is

stored in a reliable disk queue, failures will not result in anything more than rolling

back state and retrying until the problem is fixed. The replicated fault-tolerant

design of the scheduling system allows for continued successful system scheduling

during n-1 scheduler server failures when n replicated servers are configured.

schedclient is relatively simple and may only fail to submit commands to the sched-

ule command queue if the Tuxedo queuing system is unavailable or has failed.

Notice of such failures is immediate and failures are reported to the user via the

controlling environment, be it a command shell or the tuxpad GUI message win-

dow.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
tuxshe l l

IDC Automatic Processing applications such as DFX and GA are not DACS servers

or clients. Rather, they are child processes of the generalized processing server tux-

shell. tuxshell satisfies the system requirements for support of basic, but reliable,

pipeline process sequencing. Pipeline process sequencing requires application soft-

ware execution and management within a transactional context. tuxshell performs

the following functions as a transaction when called by a TMQFORWARD (or

another tuxshell) (Figure 25):

1. Receive the message that was dequeued from the source queue by the

TMQFORWARD that is upstream in the processing sequence, or receive

the message from another tuxshell if within a compound tuxshell pro-

cessing sequence.

2. Extract certain parameters from the message (for example time, end

time, and station name for a processing interval).

3. Use these parameters to create a command line that calls an application

program and contains a set of parameters/parameter files.

4. Spawn a child process by passing the command line to the operating sys-

tem.

5. Update the appropriate row in the interval or request table to status xxx-

started with the name of the application program replacing xxx.

6. Monitor the outcome of processing, and

– if successful (as determined by the child process’s return code)

enqueue a message into the next queue in the processing sequence

and update interval.state to done-xxx, or call another specified tux-

shell in the case of a compound tuxshell processing sequence.

– in case of failure (as determined by the child process’s return code)

requeue the message into the source queue, update interval.state to

retry, and increment the retry count; or, if the retry count has been

exceeded, place the message in the failed queue and update inter-

val.state to failed-xxx.
83

i o n C o n t r o l S y s t e m (D A C S)

1

84

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
– in case of time out (as determined by the processing time exceeding

a configured value) kill the child process, requeue the message into

the source queue, update interval.state to retry, and increment the

time-out retry count; or, if the time-out retry count has been

exceeded, place the message into the failed queue and update inter-

val.state to timeout-xxx.

– go to sleep (await next service call).

The preceding list is applicable to tuxshell for Automatic Processing. For the Inter-

active Processing, database operations are absent (in other words, no interval table

updates), and an additional reply message (success or failure) is sent to the sender

(for example, ARS), the value of which is equal to the return code of the child.

tuxshell works in a transactional mode. tuxshell rolls back any changes to the

queues and the interval/request table if some error (other than a failure of the appli-

cation program) occurs. Application program failures, both orderly ones with non-

zero return codes and ungraceful terminations, are handled through the retry/

failed mechanism described previously. However, child processes access the data-

base independently and not through the DACS, so they are responsible for ensur-

ing the rollback upon abnormal termination or time out.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

85
ID

C
-7

.3
.1

 Ju
n

e
 2

0
0

1

D
istrib

u
te

d
 A

p
p

lic
a

tio
n

 C
o

n
tro

l S
y

ste
m

 (D
A

C
S

)

▼

C
h

a
p

te
r 4

:

D
e

ta
ile

d
 D

e
s
ig

n

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

and
itor

ct to
out

A

interval
FIGURE 25. TUXSHELL DATA FLOW

message,
Parse

extract key
values

2

command
Build

to execute

3

A

command A
Execute

4

comm
Mon

subje
time

5

IPC
Forward

message

0

TMQFORWARD
or another tuxshell

yes

Retry or fail

5a

no

run ?
successfulnext queue

Forward to

or
tuxshell

6

tuxshell
Compound

7

Main Driver

1

yes

no

success/fail
Return

8

failed queue

B

intervalDb

db server

timeout

Db

?

user parametersD

86

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
I nput /P rocess ing /Output

Figure 25 on page 85 shows tuxshell’s data and processing flow. tuxshell receives

input from user-defined parameter files and IPC messages through a Tuxedo ser-

vice call. The Tuxedo service call originates from a TMQFORWARD server or

another tuxshell (processes 0 and 1 in Figure 25 on page 85). The parameter files

and IPC message specify all processing details for a given instance of the tuxshell

server. Details include the name of the application program to be executed and

managed, various keys and values used in the construction of the application pro-

gram command line, database state values, processing sequencing values, and the

name of the database service used for database updates. The user parameters are

used to execute and manage the application program, and forward, retry or

declare “failed” the application within the context of a pipeline processing

sequence, all within a Tuxedo transaction.

tuxshell parses the IPC message to retrieve values to build the application program

command line to be executed (process 2 in Figure 25 on page 85). The IPC mes-

sage is string-based and contains name/value pairs in libpar(3) fashion. The values

extracted from the message are limited to the name key values that are user-

defined. Typically, a station or network name, time and endtime will be included in

the name key values. This is true in general because tuxshell manages the process-

ing of an application server that operates on an interval of time. The elements of

the command line are user defined and allow for the substitution of the parsed val-

ues (process 3 in Figure 25 on page 85). The completed command line is executed

(process 4 in Figure 25 on page 85), and tuxshell then initiates monitoring of the

child process. Monitoring of the application server includes capturing the exit code

of the process if it terminates in a normal manner, killing the process if a time-out

condition arises, and detecting an abnormal termination following various UNIX

signal exceptions (process 5 in Figure 25 on page 85).

A normal application program run terminates with an exit code indicating success

or failure, subject to user-specified exit values. A successful match of the exit code

results in an attempt to forward the processing interval to the next Tuxedo queue

or to the next tuxshell depending on user parameters (process 6 in Figure 25 on

page 85). Successful forwarding is always coupled with a database update via a
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
service call to the database server, dbserver. Forwarding failures in the form of a

database service request failure, Tuxedo enqueue failure, or failure of the next tux-

shell service request, result in a rollback of processing. The rollback is Tuxedo

queue based wherein the transaction opened by the calling TMQFORWARD is

undone, and the IPC message is returned to the source queue. In the case of tux-

shell compound processing, where one tuxshell is called by another tuxshell (pro-

cess 7 in Figure 25 on page 85), the service requests are unwound by failure

returns, and the original transaction from the originating TMQFORWARD is rolled

back.

Illegal exit codes, application server timeout, or abnormal process terminations are

handled by tuxshell in a similar manner. Basically, processing intervals are either

retried or declared failed subject to a user-specified maximum number of retries

(process 5a in Figure 25 on page 85). Retry processing results in requeuing the

interval into the source queue. Error processing results in enqueueing the interval

into the user-specified failure queue. tuxshell queuing operations are always cou-

pled with database updates via service calls to dbserver, and both operations are

part of one transaction. Failure of either operation results in a transaction rollback

as described above.

tuxshell generates output to log files, the database (via dbserver), and Tuxedo

queues. Output to the database includes updates to the interval or request tables.

Database updates are coupled with enqueues as described above.

Within the context of the Interactive Processing, tuxshell supports all previously

described processing with one exception and one addition. An IPC request from an

Interactive Processing client (for example, ARS), results in tuxshell returning the

exit value directly back to the calling client via an IPC message. In addition, an IPC

event is sent to the DACS client, dman. This IPC event is consistent with IPC mes-

saging within the interactive where any message send or receive is accompanied

by a broadcast to dman notifying this client of each message operation within the

interactive session. The acknowledgement IPC message and event are not coupled

with any database updates via dbserver requests. Essentially, the application pro-

gram that is run on behalf of the interactive client is run on-the-fly and is of inter-
87

i o n C o n t r o l S y s t e m (D A C S)

1

88

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
est only to the analyst who owns the interactive session. The pipeline operator is

not interested in monitoring these intervals (for example, via the WorkFlow dis-

play).

Cont ro l

Tuxedo controls the start up and shut down of tuxshell, because tuxshell is a Tux-

edo application server. However, tuxshell can also be manually shut down and

booted by the operator. Tuxedo actually handles all process execution and termi-

nation. Tuxedo also monitors tuxshell servers and provides automatic restart upon

any unplanned server termination.

I n te r f aces

Operators use the Tuxedo command line administration utilities directly or indi-

rectly by tuxpad to manually boot and shut down tuxshell.

Er ro r S ta tes

tuxshell can fail during start up if the user parameter file is non-existent or contains

invalid settings. Start up errors are recorded in the local Tuxedo ULOG file of the

machine hosting the failed tuxshell server. tuxshell error handling of the application

server child process is fairly extensive and is described in “Input/Processing/Out-

put” on page 78.

tuxshell servers benefit from server replication, wherein a given tuxshell instance

can be replicated across more than one machine. In this scenario, recovery from

any server or machine failure is seamless because the replicated tuxshell server

takes over processing. Tuxedo recovers the program crash by automatically restart-

ing the server.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
dbse rve r, i n te rva l _ rou te r, and
recyc le r _ se rve r

dbse rve r

dbserver provides an interface between the ORACLE database and DACS servers.

All instances of tuxshell within the context of Automatic Processing operate on the

interval or request table in the database through dbserver. Any number of tuxshell

servers send database update statements to one of several replicated dbservers. In

turn, dbserver submits the database update to the ORACLE database server (Figure

26). This setup has the advantage that fewer database connections are required.

Conservation of database connections and/or concurrent database connections is

at least an implicit system requirement, and as such, inclusion of dbserver within

the pipeline processing scheme of DACS was an important design decision.

FIGURE 26. DBSERVER DATA FLOW

statement to
Send SQL

database

2

Main Driver

1

interval,
Db request

SQL update
string

user parametersD

a

client or
Calling

server
(for example,

tuxshell)
89

i o n C o n t r o l S y s t e m (D A C S)

1

90

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
i n te rva l _ rou te r

The routing of messages to particular instances of a server for different data

sources is supported by interval_router (process 5 in Figure 14 on page 50). Mes-

sage routing is manifest in message enqueues into a set of defined queues. Each

message route is a function of the message data where the user-defined parame-

ters map data values to a particular destination queue name. Message routing can

be used to ensure that detection processing of data from a particular station is

directed to a specified queue. The DACS can be configured to process messages

from specific queues on specific machines (for example, a machine that physically

holds the corresponding diskloop on a local disk). interval_router can also be used

to implement data dependent routing (for example, to make a distinction between

seismic and infrasonic stations).

recyc le r _ se rve r

Under certain system error conditions queue messages may be diverted to the

error queue. For example, replicated servers that advertise a service may become

unavailable if an operator inadvertently shuts down all servers that advertise the

service. A TMQFORWARD could subsequently try to send the message to the now

unavailable service. In case of such a failure the message ends up in the error

queue, perhaps after failed attempts by the TMQFORWARD. An operator could

attempt to manual recover this message (recover the processing interval). How-

ever, recycler_server automatically handles retries in this failure scenario.

recycler_server regularly checks the error queue and recycles any messages found

in the error queue by placing the messages back in their original queue (processes

11 and 12 in Figure 14 on page 50).

The error queue is distinct from the failed queue that collects messages from

repeated application processing failures. Reprocessing of failed intervals is handled

under operator control via the workflow monitoring utility, WorkFlow. Application

failures and subsequent reprocessing is normally part of operator’s investigation

into the reason for the failure. System errors which are often transient in nature are

ideally automatically reprocessed. The design of recycler_server is influenced by the

DACS system-wide requirement to provide fault tolerance.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
I nput /P rocess ing /Output

dbse rve r

dbserver receives input from user parameters and tuxshell application servers. The

user parameters define the ORACLE database account to which dbserver connects

and forwards database statements. tuxshell servers send dbserver the database

update messages through an IPC message string. The IPC input message consists

of a fully resolved SQL statement that is simply submitted to the ORACLE data-

base server via a standard libgdi call. dbserver further uses a libgdi call to commit

the database submission assuming a successful database update. dbserver returns a

success or failure service call return value to the calling tuxshell depending on the

status of the database operation. dbserver logs all database statements and

progress to the user-defined log file.

i n te rva l _ rou te r

interval_router receives input from user parameters and data monitor application

servers. The user parameters define the mapping between interval name (same as

station or sensor name) and the target Tuxedo queue name as well as the name of

the qspace to which the messages will be routed. A data monitor server such as

tis_server can optionally rely upon interval_router for enqueuing new intervals into

Tuxedo queues. A tis_server sends interval_router the interval IPC message, and

interval_router performs the enqueue operation as a function of the interval name.

The interval name is extracted from the interval message. The name is extracted by

the Tuxedo FML32 library, which provides an API interface for reading from and

writing to Tuxedo IPC messages. The interval message source and destination

fields are set by interval_router to conform with the DACS interval message format

standard (see libipc below for details). interval_router then attempts to map the

interval name to the target queue as defined by the user parameters.

interval_router returns a success or failure service call return value to the calling

tis_server depending on the status of the mapping and/or enqueue operation.

interval_router logs all routing progress to the user-defined log file.
91

i o n C o n t r o l S y s t e m (D A C S)

1

92

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
recyc le r _ se rve r

recycler_server receives input from user parameters and a TMQFORWARD server.

The user parameters define the name of the qspace to which messages will be

recycled. TMQFORWARD monitors the error queue and sends any available mes-

sages in that queue to recycler_server. recycler_server extracts the source service

name (which is the queue name) from the interval message. Like interval_router,

the source service name is extracted by the Tuxedo FML32 library. recycler_server

resets the failure count and timeout count to zero by updating the corresponding

fields in the interval message. This is done because the recycled message is

intended for retry as if it were a new interval with no previous failed attempts.

recycler_server then attempts to enqueue the revised interval message to the origi-

nating queue. recycler_server returns a success or failure service call return value to

the calling TMQFORWARD depending on the status of the enqueue operation.

recycler_server logs all routing progress to the user-defined log file.

Cont ro l

Tuxedo controls the start up and shut down of dbserver, interval_router, and

recycler_server, because dbserver, interval_router, and recycler_server are Tuxedo

application servers. However, dbserver, interval_router, and recycler_server can also

be manually shut down and booted by the operator. Tuxedo controls all actual pro-

cess executions and terminations. Tuxedo also monitors the servers and provides

automatic restart upon any unplanned server termination.

I n te r f aces

Operators can assist in the control of dbserver, interval_router, and recycler_server

by using the Tuxedo command line administration utilities directly or indirectly via

tuxpad.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
Er ro r S ta tes

dbserver, interval_router, and recycler_server can fail during start up if the user

parameter file is non-existent or contains invalid settings. Start up errors are

recorded in the local Tuxedo ULOG file of the machine hosting the failed server.

Service failure, including database submit failure in the case of dbserver or enqueue

failures in the case of interval_router and recycler_server, result in failure return

codes to the calling servers as described above. In each case, the calling server

handles these service failures.

These application servers benefit from server replication wherein a given server

instance can be replicated across more than one machine. In this scenario, recovery

from any server or machine failure is seamless because the replicated server takes

over processing. Tuxedo recovers the failure of a dbserver, interval_router, or

recycler_server due to a program crash by automatically restarting the server.

Database connection management is included in dbserver. An application server

such as dbserver runs for long periods of time between reboots, and so on.

dbserver’s runtime duration might exceed that of the ORACLE database server. In

general these design goals are satisfied by management of the ORACLE database

connection, such that a temporary disconnect or failure can be retried after a wait

period.

WorkF low, SendMessage , and
P rocess In te rva l

WorkFlow provides a graphical representation of time interval information in the

system database (the interval and request tables). WorkFlow satisfies the system

requirement to provide a GUI-based operator console for the purpose of monitor-

ing the progress of all automated processing pipelines in real or near real time. The

current state of all automated processing pipelines is recorded in the state column

of each record in the interval and in the status column of the request database table.

WorkFlow visualizes the Automatic Processing pipeline and progress of analyst

review by displaying rows or timelines organized by pipeline type or class (for

example, TI/S - time interval by station) and processing name or station (for exam-
93

i o n C o n t r o l S y s t e m (D A C S)

1

94

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
ple, ARCES - seismic station) (Figure 27). Each horizontal timeline row is composed

of contiguous time interval columns or bricks. The WorkFlow brick is colored

according to the interval state where the mapping between state and color is user

defined. The timeline axis is horizontal with the current time (GMT) on the right

side. All interval bricks shift to the left as time passes, and newly created intervals

occupy the space on the right. The WorkFlow design enables convenient scaling of

the amount of interval information displayed on screen. The horizontal pixel size of

each time block is reduced or enlarged depending on the number of intervals dis-

played. The GUI-based controls enable the operator to adjust the history or num-

ber of intervals hours and duration, which is essentially the horizontal size of each

WorkFlow brick.

A requirement also exists to enable the operator to reprocess any interval via GUI

control. Intervals eligible for reprocessing are defined via user parameters and are

typically limited to intervals with state(s) that define a terminal condition such as

failed, error, or even done/success. SendMessage enables interval reprocessing by

translating database interval information into a Tuxedo queue-based message and

then routing the message to a Tuxedo queue to initiate pipeline processing for the

desired interval. ProcessInterval is a shell script that facilitates linking WorkFlow and

SendMessage.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

95
ID

C
-7

.3
.1

 Ju
n

e
 2

0
0

1

D
istrib

u
te

d
 A

p
p

lic
a

tio
n

 C
o

n
tro

l S
y

ste
m

 (D
A

C
S

)

▼

C
h

a
p

te
r 4

:

D
e

ta
ile

d
 D

e
s
ig

n

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

timeline for
network
processing

timelines for
station
processing

–80
 are
FIGURE 27. MONITORING UTILITY WORKFLOW

NameClass

lookback
control

horizontal
scale
control

Intervals have completed sta-
tion processing, but are too
late for inclusion in SEL1.

“Skipped” intervals with 0
percent of waveform data
not queued for processing

96

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N

I npu t /P rocess ing /Output

WorkFlow

 receives input from three sources including user parameters, the data-

base, and the user via manipulations and selections of the GUI. The user parame-

ters specify database account values, query options, and definitions for all classes

and names of time intervals that

WorkFlow

 will monitor.

WorkFlow

 maintains an internal table of all time intervals. The size of the table can

be significant because

WorkFlow

 is required to display tens of thousands of bricks,

which can span a number of timelines (easily 100) and hundreds of intervals on

each timeline. Access to the table for interval updates must be fast enough to

avoid interactive response delays in the GUI. To meet these requirements,

Work-

Flow

 is designed around a hash table, which achieves O(1)

11

 based access for

nearly instantaneous, specific interval recall. The hash table is shown as an internal

data structure (M1 in Figure 28). The hash table is built during

WorkFlow

 initializa-

tion where all time intervals, subject to a user-specified time lookback, are retrieved

from the database. The construction of the hash table can be expensive but the

initialization or start-up delay is still bounded by the database

select

 on the

interval

or

request

 table.

11. O- notation or order-notation is used to quantify the speed characteristics of an algorithm. For example,
a binary search tree would be O(log

2

) or on order log base two search time. O(1) implies direct lookup

which is optimal.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design

F

IGURE

 28. W

ORKFLOW

 D

ATA

 F

LOW

user parametersD Main Driver

1

table
Build

2

widgets
Build timeline

3

and GUI
Display intervals

4

Update

5

hash table of
M1 time intervals

timeline
M2 widgets

interval
Process

6

message;
Send

7

DFX

Db

•

operator

a

operations
intervals
requests

update
interval

Db operations

intervals
requests
97

i o n C o n t r o l S y s t e m (D A C S)

1

98

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N

The hash table is updated during every

WorkFlow

 update cycle. The

WorkFlow

update cycle consists of interval database queries where the

select

 is confined to all

intervals of interest that have

moddate

 values within the previous 5 minutes.

Retrieved rows include time intervals that have changed state as well as new time

intervals. This current interval information is used to update or add to the hash

table.

Input to

WorkFlow

 via the GUI consists of pointer selections to vertically scroll

through the list of timelines, horizontally scroll across all time intervals, scale the

interval history and duration, retrieve interval class, name, times, state, and interval

identifier from a specific brick, and reprocess a specific brick (if enabled). Addition-

ally, GUI input is accessible via pull-down menus that enable

WorkFlow

 re-initial-

ization, update on demand, display of exception (failed) intervals, and display of a

color-based legend for color/state mappings. All GUI input results in exercising

various control and interface functions that are described in the following sections.

WorkFlow

 output is primarily defined by the GUI display and is in part under user

control as described above. The update cycle is automatic (and manual via a menu

selection), and results in an updated visualization of the hash table.

WorkFlow

diagnostics are sent to the GUI message window at the bottom of the

WorkFlow

display.

WorkFlow

 error messages (particularly of the fatal variety) are sent to the

controlling terminal when the GUI message window is not yet displayed.

12

ProcessInterval

 and

SendMessage

 are driven by

WorkFlow

, and as such their input is

provided by

WorkFlow

. Both the

ProcessInterval

 C-Shell script and the

SendMessage

program can be run stand-alone, although in practice

SendMessage

 is the only can-

didate for usage outside of

WorkFlow

.

WorkFlow

 is typically configured to run

Pro-

cessInterval

 upon user selection of interval reprocessing. In turn, the script builds a

 SendMessage command line and then runs the command. The SendMessage com-

mand line includes all interval values including

class

,

name

,

time

,

endtime

,

state

,

and interval identifier.

SendMessage attempts to enqueue the interval information

into a Tuxedo queue. SendMessage is a Tuxedo client application that uses the Tux-

edo tpenqueue() API call to send to the Tuxedo queue (processes 6 and 7 in Fig-

12. The WorkFlow GUI is not displayed if a fatal error occurs during startup.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design

ure 28).

SendMessage

 output is sent to the controlling terminal, which is

WorkFlow

in this case. WorkFlow redirects SendMessage output to the WorkFlow message

window, which reports the results of command.

Cont ro l

WorkFlow is an interactive client application and is started and shut down by sys-

tem operators. WorkFlow is primarily designed for monitoring and is therefore pri-

marily a read-only tool. However, interval reprocessing and other possible write-

based operations are available. As such, WorkFlow is typically started via shell

scripts that limit access to read only for public monitoring of the automated pipe-

line processing system and allows full access for the pipeline operators. WorkFlow

start shell scripts also exist for convenient monitoring of the request table.

The ProcessInterval shell script is run by WorkFlow as described in the previous sec-

tion. The SendMessage application is run by ProcessInterval in the WorkFlow con-

text (also described above). The SendMessage client can be run stand-alone and

usage is similar to any standard command line application except that as a Tuxedo

client application, SendMessage must be run on an active Tuxedo host.

I n te r f aces

The WorkFlow GUI is designed around the expectation of a relatively high perfor-

mance graphical subsystem that is accessible through a high-level programming

interface that likely includes an abstract class-based GUI toolkit. The GUI toolkit

should enable extension so that new GUI components can be created if required

for unique feature requirements, speed, or implementation convenience.

WorkFlow is currently implemented using the X11 Window System using the Xlib,

Xt, and Motif toolkits and libraries. The GUI design and layout relies upon widgets

for a graphical canvas (main form) upon which pull-down menus, scroll bars, scale

bars, a message window, and the main form windows for brick and class/name

display can be constructed in one GUI widget hierarchy. The displayed timelines

are handled via a custom timeline widget that controls display and management of

each brick on the timeline.
99

i o n C o n t r o l S y s t e m (D A C S)

1

100

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
The ProcessInterval and SendMessage interfaces and interaction between each

other and WorkFlow are described in the previous sections.

Er ro r S ta tes

WorkFlow errors and failures can occur at program initialization or during program

execution. The most typical error state is invalid or incomplete user parameters.

User parameters define the time interval classes, state to color mappings, interval

reprocessing commands, as well as database account and query information.

Incorrect database parameters usually result in WorkFlow termination. Incomplete

color/state specification can result in program termination or unexpected and con-

fusing color mappings. Insufficient color map availability is a common error state

whereby WorkFlow will not even start. WorkFlow provides/produces relevant error

messages to direct the user to a solution.

Runtime WorkFlow errors are most typically associated with a database server fail-

ure where, for example, the server may go away for a period of time. WorkFlow

has been designed to survive a database server outage via recurring attempts to

reconnect to the database server and resume normal continuous monitoring.

ProcessInterval errors are probably due to invalid user parameters, which should

become apparent via error messages provided to the WorkFlow GUI message win-

dow. SendMessage errors should only occur if the Tuxedo queuing is not available

or the Tuxedo qspace is full, both of which would be indicated in the GUI message

window.

l i b ipc , dman , and b i rd ie

libipc and dman satisfy requirements for DACS support of distributed asynchro-

nous messaging between Interactive Tools, management of an interactive session

through the monitoring of messages and Interactive Tools within the session, and

execution of Interactive Tools on demand. All Interactive Tools (for example, ARS,

dman, and XfkDisplay) link to and use libipc for message passing and session man-

agement.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
libipc consists of an Application Programming Interface (API) or library of routines,

which enable reliable distributed asynchronous messaging and message and client

monitoring within an interactive session. dman is a GUI-based interactive client

with special bindings to the libipc library to enable session monitoring and man-

agement. birdie is a command-line-based application, which is primarily intended

as a test driver to exercise the libipc API. birdie permits arbitrary access to all ses-

sion-level functions (for example, delete a message in a queue), and as such can be

used by operators either directly or via embedding in scripts to perform certain

manipulations on queries.

Figure 15 on page 53 shows the data flow of DACS CSCs for Interactive Process-

ing. The data flow among the various processes and DACS is described in “Data

Flow Model” on page 48. The messages exchanged between the Interactive Tools

(all libipc messages) pass through Tuxedo disk queues. Storing messages within a

disk based Tuxedo queue ensures that the messaging is asynchronous, because the

message send and receive are part of separate queuing operations and transac-

tions. For example, under analyst control (a in Figure 15 on page 53), a message

sent from ARS (process 2 in Figure 15 on page 53) intended for XfkDisplay is

enqueued by libipc into the XfkDisplay queue. Asynchronous messaging allows for

the possibility that XfkDisplay may not be currently running in the analyst’s interac-

tive session. libipc uses Tuxedo-based events (memory-based broadcast messages)

to signal dman for each message send or receive within the interactive session

(processes 3 and 1 in Figure 15 on page 53). The Tuxedo server, TMUSREVT (not

shown in Figure 15), processes all user events for Tuxedo clients and servers. The

event processing includes notification and delivery of a posted event (for example,

from ARS) to all clients or servers that subscribe to the event or event type (for

example, dman). dman tracks the processing status of all clients within the analyst’s

interactive session via libipc. dman executes XfkDisplay on demand if it is not

already running (process 4 in Figure 15 on page 53). dman uses the processing sta-

tus for each client to visually present to the analyst the status of that client. dman

monitors all message traffic within the interactive session via the libipc events

described above and can therefore keeps track and visually display the consump-
101

i o n C o n t r o l S y s t e m (D A C S)

1

102

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
tion and creation of messages. In addition, dman can query the number of queued

messages for any session client/queue, which is required at session start up to

determine the absolute number of pending messages in each queue.

The relationship between libipc and DACS for Automatic Processing is limited and

nonexistent for the purposes of the dman client. However, libipc defines the struc-

ture of the IPC messages that are used within Automatic Processing and Interactive

Processing as well as between these subsystems. ARS relies upon Automatic Pro-

cessing for interactive recall processing such as DFX-based Beam-on-the-Fly

(BOTF) processing. Recall processing depends upon a standard libipc-based mes-

sage send by ARS to the BOTF queue, which is configured within the interactive

session queuing system (processes 2 and 5 in Figure 15 on page 53). The TMQ-

FORWARD/tuxshell configuration for managing Automatic Processing applications

works in a similar but not identical manner to DACS for Interactive Processing

(processes 5–7 in Figure 15 on page 53). TMQFORWARD calls a tuxshell server

within a transaction, but the processing application status, success or fail, is sent

back to the calling client via a libipc message (process 6 in Figure 15 on page 53).

However, the message is not entirely libipc compliant in that tuxshell does not send

an IPC broadcast to the interactive session dman client.13 Finally, tuxshell does not

attempt an interval.state update in the databases because this processing is on-the-

fly and is not represented as an interval in the database.

The structure of messages within DACS for both Interactive Processing and Auto-

matic Processing is defined by libipc and is described in detail in Table 3. The first

column of Table 4 lists the message attribute name, the middle column maps any

relationship to the database interval/request table, and the third column defines the

attribute and explains how it is used within DACS for both Interactive and Auto-

matic Processing.

The design decision to base libipc messaging on Tuxedo disk queuing was influ-

enced by several criteria including convenience, history, and implementation time

constraints. The implementation was convenient because messages within DACS

for Automatic Processing are based upon Tuxedo queues, and Interactive Process-

13. In practice, the lack of the IPC event message does not cause any problems.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
ing and Automatic Processing can exchange messages. As a result a unified mes-

saging model across the two systems, which exchange messages, was

implemented. In practice, Interactive Processing and Automatic Processing run in

separate DACS applications, and as such the messaging does not cross between

the systems. However, this configuration was not anticipated and therefore was

not part of the design decision. Earlier DACS implementations had also successfully

used the unified model. The TMQFOWARD/tuxshell scheme is re-used within the

Interactive Processing configuration, and as such some leveraging is realized even

though the systems run in separate applications. It would be possible to re-imple-

ment DACS for Interactive Processing based upon a messaging infrastructure sepa-

rate from Tuxedo. Such an implementation would likely have to include a gateway

or bridge process to pass messages from Interactive Processing to the Tuxedo-

based DACS for Automatic Processing.

TABLE 3: DACS/LIBIPC INTERVAL MESSAGE DEFINITION

Field Name Database Interval Description

1 MSGID interval.intvlid Each Tuxedo queue message can have a
unique identifier assigned at the application
level (not assigned by Tuxedo, which assigns
its own identifier to each queue message for
internal purposes). This unique identifier is
known as the queue correlation ID (CORRID),
and this value can be used for query access to
the queue message (for example, to delete or
read the message out of normal First In First
Out (FIFO) queue order). DACS sets MSGID
(CORRID) to the value of interval.intvlid,
thereby linking the queue interval message to
the database interval record.

2 MSGSRC N/A This field stores the source qspace name and
queue. The source is sometimes referred to as
the sender, as in the sender that initiated the
message send.

3 MSGDEST N/A This field stores the destination qspace name
and queue. The destination is sometimes
referred to as the receiver, as in the recipient
that receives the delivered message.
103

i o n C o n t r o l S y s t e m (D A C S)

1

104

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
4 MSGCLASS N/A This field stores the class of the message,
which is generally used to distinguish queue
messages between the Automatic and Interac-
tive Processing DACS applications.

5 MSGDATA interval.time/
endtime/name/
class/state/intvlid,
request.sta/array/
chan/class/
start_time/
end_time/reqid

For messages sent to or within Automatic Pro-
cessing, MSGDATA stores interval or request
information. These messages originate from
either DACS data monitors or an Interactive
Tool such as ARS. The tuxshell server extracts
this message value as a string and then parses
time, class, and name values used to construct
the automated processing application com-
mand line. For messages returned to an Inter-
active Tool from tuxshell, MSGDATA stores a
success or fail code/string that represents the
status of the automated processing applica-
tion. For messages within Interactive Process-
ing, MSGDATA stores string-based IPC
messages relevant to the sender and receiver
Interactive Tools. These IPC messages may
include algorithm parameters, database
account and table names, file path names,
scheme code, and so on.

6 MSGDATA2 N/A This field stores interval priority assigned by a
DACS data monitor. DACS queuing optionally
supports out of order dequeuing (for example,
via TMQFORWARD) based upon interval pri-
ority. The data monitor server, tis_server, can
enqueue new intervals such that more recent
or current data are processing before older or
late arriving data.

7 MSGDATA3 N/A This field stores application processing time-
out failcounts, which are managed by tux-
shell.

8 MSGDATA4 N/A This field is reserved for future use.

9 MSGDATA5 N/A This field is reserved for future use.

10 FAILCOUNT N/A This field stores application processing fail-
counts, which are managed by tuxshell.

TABLE 3: DACS/LIBIPC INTERVAL MESSAGE DEFINITION (CONTINUED)

Field Name Database Interval Description
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
I nput /P rocess ing /Output

Input and outputs within libipc are largely based upon the details or call semantics

of the API. Important details related to the libipc API are listed in Table 4. The first

column in the table lists the API call name. The second column describes the call.

The third column indicates if the call is used by any of the DACS CSCs for Auto-

matic Processing. In general, the DACS CSCs for Automatic Processing do not rely

upon libipc for their messaging, and their usage is limited to fairly trivial conve-

nience functions. The fourth column indicates which Interactive Processing DACS

clients use the API call. The final column briefly notes the API call’s usage of queu-

ing, events, and Tuxedo Management Information Base (MIB) calls. The Tuxedo

MIB API provides for querying and changing the distributed application.

dman input and output, beyond that already described and related to libipc, is

described in the Interactive Analysis Subsystem Software User Manual [IDC6.5.1]

and the dman man page, dman(1).

birdie is a command-line-driven program, and its inputs and outputs are described

in the birdie man page, birdie(1).
105

i o n C o n t r o l S y s t e m (D A C S)

1

 Ju
n

e
 2

0
0

1
 ID

C
-7

.3
.1

 D
istrib

u
te

d
 A

p
p

lic
a

tio
n

 C
o

n
tro

l S
y

ste
m

 (D
A

C
S

)

▼

C
h

a
p

te
r 4

:

D
e

ta
ile

d
 D

e
s
ig

n

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

106

TABLE 4: LIBIPC API

API function Description

DACS
Automatic
Processing

DACS
Interactive
Processing
Usage1

IPC Queue/ IPC
Event/ Tuxedo MIB
Usage

all Uses a message
enqueue to test the
specified default IPC
queue.

all N/A

all except
dman

Uses a message
enqueue and an
event broadcast to
the session’s dman
client.

all except
dman

Uses a message
dequeue and an
event broadcast to
the session’s dman
client.

all except
dman

N/A
Usage

1 ipc_attach() Attaches calling client to the IPC session defined
by the QSPACE environment variable and the
group and name arguments. Returns a pointer
to an ipcConn object, which provides access to
the IPC session for this client.

N

2 ipc_detach() Detaches calling client from the IPC session
pointed to by the ipcConn object argument.

N

3 ipc_send() Sends a message to the specified message
queue within the IPC session pointed to by the
ipcConn object argument.

N

4 ipc_receive() Retrieves the next message in the specified
queue within the IPC session pointed to by the
ipcConn object argument.

N

5 ipc_check() Returns boolean true if a new message has
arrived to the default queue since the last
ipc_receive() call. The default queue is the
queue name provided during the ipc_attach()
call and is defined in the ipcConn object. This
function always returns boolean true due to an
implementation change to libipc.2

N

107
ID

C
-7

.3
.1

 Ju
n

e
 2

0
0

1

D
istrib

u
te

d
 A

p
p

lic
a

tio
n

 C
o

n
tro

l S
y

ste
m

 (D
A

C
S

)

▼

C
h

a
p

te
r 4

:

D
e

ta
ile

d
 D

e
s
ig

n

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

Uses Tuxedo MIB
calls to retrieve the
number of mes-
sages.

Uses message
dequeue(s) to purge
queue message(s).

Uses Tuxedo MIB
calls to determine
the client process-
ing status.

N/A

N/A

N/A

TABLE 4: LIBIPC API (CONTINUED)

IPC Queue/ IPC
Event/ Tuxedo MIB
Usage
6 ipc_pending() Retrieves the number of messages queued for
the list of queue names specified.

N dman and
birdie only

7 ipc_purge() Deletes first or all messages from the specified
queue.

N dman and
birdie only

8 ipc_client_status() Retrieves the processing status for each client
defined in the list of specified clients.

N dman and
birdie only

9 ipc_add_xcallback() Registers a client callback function, which is
invoked periodically for the purposes of polling
an IPC queue. Presumably the callback function
will use ipc_receive() to retrieve IPC messages.
The frequency of the callbacks is currently fixed
at two times per second.3

N all except
dman

10 ipc_remove_xcallback()

Removes the client callback function from the
clients libXt Xtoolkit event loop.

N all except
dman

11 ipc_get_error() Retrieves error status following all libipc calls
and detailed error information for any error
conditions.

N all

API function Description

DACS
Automatic
Processing
Usage

DACS
Interactive
Processing
Usage1

 Ju
n

e
 2

0
0

1
 ID

C
-7

.3
.1

 D
istrib

u
te

d
 A

p
p

lic
a

tio
n

 C
o

n
tro

l S
y

ste
m

 (D
A

C
S

)

▼

C
h

a
p

te
r 4

:

D
e

ta
ile

d
 D

e
s
ig

n

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

108

all except
dman

N/A

all except
dman

N/A

all except
dman

N/A

, ARS, XfkDisplay, Map, PolariPlot,

al message read/dequeue. Problems
 polling is carried out via explicit calls
ich in effect forces an ipc_receive()

 event via the XtAppAddTimeOut()

TABLE 4: LIBIPC API (CONTINUED)

API function Description

DACS
Automatic
Processing
Usage

DACS
Interactive
Processing
Usage1

IPC Queue/ IPC
Event/ Tuxedo MIB
Usage
12 ipc_get_group() Convenience function that extracts the IPC
group name given the specified IPC queue
name (IPC address).

N

13 ipc_get_name() Convenience function that extracts the IPC
name given the specified IPC queue name (IPC
address).

Y

14 ipc_make_address() Returns the IPC address (IPC queue name)
based upon the specified IPC group and name.

Y

1. libipc-based clients that are relevant to the DACS for Interactive Processing include dman, birdie
SpectraPlot, IADR, and AEQ.

2. The ipc_check() call was intended to enable a check for pending queue messages without an actu
with the Tuxedo unsolicited message handling feature required an implementation change wherein
to ipc_receive(). The implementation change included making ipc_check() always return true, wh
call for every client-based attempt to check for any new messages.

3. The callbacks are added to the clients libXt-based Xtoolkit event loop in the form of a timer-based
libXt call.

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
Cont ro l

libipc is a library and is therefore not explicitly started or stopped but is instead

embedded or linked into client applications.

dman is started by the analyst either manually, via the desktop GUI environment

such as the CDE, or via the analyst_log application. The dman GUI is controlled by

the analyst. dman is typically stopped via a script, which is bound to a CDE button,

or dman can be terminated by selecting the dman GUI’s exit menu option.

birdie is started, controlled, and stopped by an operator or via a script that embeds

birdie commands within it.

I n te r f aces

The exchange of data and control among libipc and its clients, including dman, has

been described in the sections “libipc, dman, and birdie” on page 100, “Input/

Processing/Output” on page 105, and “Control” above.

birdie is basically a driver for libipc, and it exchanges data with libipc and other ses-

sion clients via the libipc API. The operator provides command line input, which is

interpreted by birdie and included within the libipc API calls.

Er ro r S ta tes

The libipc implementation tests for many error conditions. Example errors include

non-existent QSPACE environment variables, bad queue names, and attempts to

send or receive messages when not attached to an interactive session. The errors

are returned back to the calling client via API return codes. Error detection and

detailed error codes and messages are accessible via the ipc_get_error() call (see

Table 4 on page 106).

dman can encounter many error conditions. An example error includes a non-exis-

tent agent parameter specification, which prevents dman from running because it

does not have a session to which it can connect. A non-existent QMCONFIG envi-

ronment variable will similarly result in an immediate failure because this variable is

required for message polling. One and only one dman per session is permitted, and
109

i o n C o n t r o l S y s t e m (D A C S)

1

110

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
dman defends against this by exiting with a failure message indicating that the ses-

sion already has an active dman if one exists. There are many other types of error

conditions that dman attempts to guard against and warn the analyst. The dman

GUI includes a message window, which conveniently presents warning messages

and other diagnostics to the analyst.

birdie directs error messages to the standard error stream, which is consistent with

most command-line-driven applications. birdie error conditions are all of the libipc

error conditions because birdie is intended to exercise all libipc API calls.

tuxpad , ope ra te_admin ,
s chedu le_ i t , and msg_w indow

tuxpad provides a GUI-based operator console to simplify operation of the DACS.

tuxpad satisfies the requirement to provide a convenient centralized operator con-

sole that can be used by the operator to control all aspects of the running distrib-

uted application. tuxpad consists of five applications; four of them are manifested

in interactive GUIs that are all accessible via the main tuxpad GUI. The five applica-

tions are: tuxpad, operate_admin, schedule_it, qinfo, and msg_window. The

schedule_it and qinfo applications can optionally be run stand-alone, whereas

operate_admin and msg_window are integral to tuxpad. All applications are

designed to provide an intuitive front end to the underlying Tuxedo administrative

commands (for example, tmadmin) and the DACS control clients (for example,

schedclient). These front ends generate Tuxedo and the DACS client commands

that are run. Their output is parsed for results that are then presented to the oper-

ator via the GUI. These primary design objectives necessitated a scripting language

including flexible text parsing, support for dynamic memory and variable length

lists, convenient process execution and management, and a high-level GUI toolkit.

Perl/Tk, the Perl scripting language with integrated bindings to the Tk GUI toolkit,

met all the requirements and is used for implementation for all five of the tuxpad

scripts.

tuxpad drives the Tuxedo command line based administration tools: tmadmin,

tmboot, and tmunloadcf (Figure 29). tuxpad also provides one button access to the

qinfo, schedule_it, and msg_window GUIs. tuxpad displays all configured machines,
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
process groups, servers, and service names contained in the distributed Tuxedo

DACS application in the main tuxpad window. Mapping between logical machine

names and actual machine names, process group names and numbers, server

names and server identifiers, and server names and service names are also dis-

played in the main tuxpad window. The mappings are interpreted following a pars-

ing of the complete Tuxedo UBB configuration, which is generated upon execution

of the tmunloadcf command. The mapping and current state of the machines,

groups, and servers is kept current via parsing the output from the tmadmin com-

mand on a recurring and on-demand basis. tuxpad is also aware of the Tuxedo

DACS notion of the backup or replicated server and is able to organize server dis-

play to conveniently present the status of both primary and backup servers.

Machine, group, and server booting and shut down are handled by tuxpad execu-

tions of the tmboot and tmshutdown commands.
111

i o n C o n t r o l S y s t e m (D A C S)

1

112

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N

FIGURE 29. TUXPAD DESIGN

Query
for all configured

2

 machines, groups,

DACS
configuration

servers, services

Get DACS
configuration

scheduler
Manage DACS

schedule_it

9

queue graph
Display

qinfo

8

4Run
message
GUI

stdout/stderr

stdout/stderr

stdout/stderr
logging

machinesM1

groupsM2

serversM3

servicesM4

and bbclean)
tmadmin (pclean

Partition and clean
machine; bulletin

board cleanup

7

6

tmboot/tmshutdown

Boot and shut down

and servers
in correct order

machines, groups,

3

update status of
Parse output to

machines, groups,
and servers

stdout/stderr

5

operate_admin

Boot and shut down

(BSBRIDGE, BBL,
BRIDGE, DBBL)

Tuxedo Admin

tuxpad

1

Main Driver

user parametersD1

D2 configuration
Tuxedo

(Binary UBB)
tmunload

tmadmin

messages
Display

msg_window

/tmp/
tuxpad.pid

D3

/tmp/
tuxpad.pid

D3

stdout/stderr
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
operate_admin is a separate or compartmentalized tuxpad function, that performs

the shut down (tmshutdown) and boot (tmboot) of the Tuxedo administrative

servers (BSBRIDGE, BRIDGE, BBL, DBBL) for all Tuxedo DACS machines (process 5

in Figure 29). operate_admin boots the machines in the order they appear in the

UBB configuration and shuts them down in the reverse order.

msg_window provides a GUI for the display of messages, warnings and errors that

are produced by tuxpad, schedule_it, and qinfo. The GUI presents the messages in

a scrolling window that can be cleared via a button press. The total number of

buffered messages is also displayed. msg_window is designed around a UNIX tail

command that is issued on the tuxpad temporary logging file created by tuxpad

(process 4 in Figure 29). tuxpad redirects standard output and standard error to the

temporary file so that all output by tuxpad and any other program or script that is

started by tuxpad (for example, schedule_it) is captured and displayed.

msg_window is started by a tuxpad button and is intended to run via tuxpad.14

qinfo provides a GUI to display the state of a Tuxedo qspace. The script is a conve-

nient front end to the Tuxedo qmadmin queue administration utility (Figure 30).

qinfo runs qmadmin on the specified QHOST. The QHOST can be reset within tux-

pad so that the backup qspace can also be monitored via a separate qinfo instance.

qinfo dynamically updates the display at a user-defined interval by presenting the

colored bars to show the number of messages in each queue. qinfo issues the

qmadmin commands and parses command output to open the qspace (command

qopen) and obtains the name and number of messages queued in every queue in

the qspace (command qinfo). The qspace and queues that are monitored by qinfo

are defined by user parameters where each queue name to be monitored is speci-

fied along with the color to use for the message queue length graph.

14. msg_window could be run stand-alone, however the tuxpad temporary file name would have to be
known, which is possible but not convenient to determine.
113

i o n C o n t r o l S y s t e m (D A C S)

1

114

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 30. QINFO DESIGN

schedule_it provides a GUI to display and manipulate the scheduling system’s

schedule service table. The script is a convenient front end to the schedclient com-

mand (Figure 31). schedule_it issues schedclient commands and parses results from

schedclient. The schedclient commands supported by schedule_it are as follows:

■ show – for on-demand querying and displaying of the service list

■ stall and unstall – for stalling or unstalling user-selected service(s)

■ init – for re-initializing the scheduling system

■ kick – for resetting the scheduling system

user parametersD

Main Driver
(qinfo)

1

qmadmin:
qopen qspace

2

qinfo

queue info

stdout/stderr

qhost, qspace,
queuenames,
colors

stdout/stderr

color in GUI;
Display queues by

update every
n seconds

3

tuxpad.pid
/tmp/
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
FIGURE 31. SCHEDULE_IT DESIGN

I nput /P rocess ing /Output

tuxpad receives input from user parameters, the Tuxedo and DACS administrative

commands and clients that it executes, and from the user via manipulations and

selections on the GUI. User parameters define various optional user preferences,

the Tuxedo master host (THOST), and the primary Tuxedo queuing server

(QHOST). The user parameters also include pointers to all standard system vari-

ables (for example, IMSPAR), which are required for successful execution of the

user parametersD1

Main Driver
(schedule_it)

1

schedclient

2

service list

service list

stdout/stderr

stdout/stderr

sched-command

sched-result

sched-command

sched-result

service listM1

show command

stall/unstall
schedclient

selected services;
kick scheduler;
initilize system

3

stdout/stderr

/tmp/
tuxpad.pid

D2

/tmp/
tuxpad.pid

D2
115

i o n C o n t r o l S y s t e m (D A C S)

1

116

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Tuxedo and DACS commands. Machine, group, and server booting and shut

down, carried out via the tmadmin command, must be executed on the THOST,

and as such tuxpad must also be run on the THOST.

During tuxpad initialization, internal arrays of configured machines, groups, serv-

ers, and services are created by parsing the output of the tmunloadcf command.

This command produces/returns an ASCII text version of the entire distributed

application configuration. These arrays are central to all supported tuxpad opera-

tions (M1–M4 in Figure 29 on page 112). The arrays are updated automatically on

a user-specified interval or more typically on demand following operator selection

of the refresh (R) GUI button. The arrays are updated through a parsing of the

tmadmin command, which outputs the current state of the distributed application.

The current state of the DACS is returned/displayed on the tuxpad main display

with the presentation organized by user selection of the GUI-provided scrolled ver-

tical lists of machine, group, or server. A color-coded number is displayed adjacent

to each listed machine, group, or server. The number represents the number of ele-

ments running (number of machines, groups, and servers) where a value other

than 0 or 1 is most relevant for servers, which can be configured to run many rep-

licated copies. The color red denotes shut down, green denotes running, and yel-

low represents running where the number running is not the configured

maximum.

tuxpad is designed to drive all operator tasks for system start up and system main-

tenance. Initial system booting, system shut down, and all intermediate machine,

group, or server booting and shut down are handled via tuxpad-driven tmboot and

tmshutdown commands. The commands are built on the fly and target specific

machines, group, or servers selected by the user through the tuxpad GUI. Adminis-

trative recovery or cleanup from machine failures is accomplished through tmad-

min executions using the tmadmin pclean and bbclean sub-commands. The tuxpad

output outside the main GUI window consists of output messages and errors gen-

erated by the executed commands (for example., tmboot, qinfo, schedule_it). The

output from the commands is captured by tuxpad and redirected to the tuxpad

temporary output file that is written to /tmp/tuxpad.<tuxpad_pid> on the local

machine. The output is visible to the operator, provided the msg_window script is

running so that the message window GUI is displayed.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
qinfo receives input from user parameters, the qmadmin utility following execution

of the command, and the user via GUI selections (see Figure 30 on page 114). The

user parameters define the QHOST, and qspace name that is to be opened and

queried. Parameters also define the complete list of queues that are to be queried

and parsed to determine the current number of messages stored in each queue.

This list includes specification of the color graph that is output by qinfo in the GUI.

User input is limited to control of the vertical scroll bar, which enables output of

any queue plots that are not presently visible on screen. qinfo errors are directed to

the tuxpad message GUI window as described above.

schedule_it receives input from user parameters, schedclient (following execution

of the schedclient show command), and the user via GUI selections (see Figure 31

on page 115). The user parameters are limited to the file path name of the sched-

client user parameter file, which is used for every schedclient command generated

and run by schedule_it. schedule_it is built around the scheduling system’s service

list, which is stored in an internal array. This array is central to all supported tuxpad

operations (M1 in Figure 31 on page 115). The array is initialized and updated by

parsing the output of the schedclient show command. The parsed input consists of

a list of service names including the scheduled time for the next service call and the

configured delay time. schedule_it displays this service list in the GUI. Selections of

one or more services can be checked by the operator to define specific services to

stall or unstall using the schedclient stall or unstall commands.

schedule_it is primarily designed to provide a simple and direct front end to sched-

client. However, like tuxpad, schedule_it is also designed to support some more

sophisticated compound command sequences. An operator selection of the Kick

Sched button results in the kick command sent to schedclient, but only after stalling

all services in the service list via the stall schedclient command for each service.

schedule_it errors are directed to the tuxpad message GUI window as described

above.
117

i o n C o n t r o l S y s t e m (D A C S)

1

118

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
The GUIs for tuxpad, schedule_it, qinfo, and msg_window are implemented using

the Tk windowing toolkit, which is accessible via the interpreted Perl/Tk scripting

language. The GUI design and layout relies upon widgets for a main form, upon

which buttons, scroll bars, text lists and text input boxes are constructed in GUI

widget hierarchy specific to each script/GUI.

Cont ro l

tuxpad is typically started by the operator and usually through a system-wide start

script such as start_Tuxpad. tuxpad should be run on the THOST for complete

access to all features and must be run as the Tuxedo DACS user (UID) that has per-

mission to run the commands tmadmin, qmadmin, and so on. qinfo can be run

stand-alone or, more typically, is started by tuxpad following operator selection of

the Q info button. tuxpad takes care to remote execute qinfo on the QHOST

machine, which is essential because the qmadmin command must be run on the

QHOST. schedule_it can also be run stand-alone but is also usually run following

operator selection of the Scheduler button. The same holds true for msg_window,

which is displayed following operator selection of the Msg Window button. All tux-

pad scripts are terminated following operator selection of the Exit buttons on each

respective GUI.

I n te r f aces

Data exchange among tuxpad, operate_admin, schedule_it, qinfo, and msg_window

is primarily file based. tuxpad updates machine, group, and server status by parsing

the standard file output returned from a run of tmadmin. schedule_it and qinfo

work along the same lines by parsing standard file output from schedclient and

qmadmin respectively. msg_window updates the GUI message window with any

new output written to the /tmp/tuxpad.pid file by tuxpad, schedule_it, or qinfo.

Data exchange within tuxpad, schedule_it, and qinfo is based upon memory stores.

These memory stores maintain dynamic lists of machines, groups, and servers in

the case of tuxpad, queues in the case of qinfo, and scheduled services in the case

of schedule_it.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
Er ro r S ta tes

tuxpad, operate_admin, schedule_it, qinfo, and msg_window are for the most part

front ends to the Tuxedo administrative commands and the schedclient DACS

command. These commands are generated in well-known constructions, and as

such not many error states are directly associated with the scripts. Error states

resulting from exercising the scripts and options selectable within the GUI can and

do result in errors. The breadth of the error states is substantial because tuxpad

controls and administers a distributed application. The discussion of general system

errors is beyond the scope of this document. However, the tuxpad msg_window

GUI provides a convenient capture of error messages that can be used by the oper-

ator to initiate system remedies. “Operator Interventions” on page 65, “Mainte-

nance” on page 89, and “Troubleshooting” on page 101 of [IDC6.5.2Rev0.1], can

be used as a source for debugging the DACS error states.

DATABASE DESCR IPT ION

This section describes the database design, database entity relationships, and data-

base schema required by the DACS. The DACS relies on the database for all

aspects of interval creation, updating, and monitoring. Management of the interval

table involves access to several other database tables. The DACS also reads and

updates the request table. Access to the database is made through libgdi.

Database Des i gn

The entity-relationship model of the schema is shown in Figure 32. The database

design for the DACS is based upon the interval table, where one interval record is

created by the DACS for each Automatic Processing pipeline and for each defined

interval of time. The interval.state column is updated by the DACS to reflect the

processing state or pipeline sequence as each interval is processed. Station-based

pipeline processing is driven by wfdisc records, which are read to determine any

newly acquired station channel waveforms that have not yet been processed.

Static affiliation records are read to map a network (net) name to a list of stations,

to map a station to a list of station sites, to map a station site to a list of station
119

i o n C o n t r o l S y s t e m (D A C S)

1

120

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
channels. The request table is read and updated in a manner similar to the interval

table, except that request records are only read and updated and are not created by

the DACS. The interval records are indexed by a unique identifier, stored in the

intvlid column, and the lastid table is read and updated to retrieve and assign

unique identifiers for each new interval record. The timestamp table is used to store

the progress of interval creation by time. The timestamp records are managed for

most of the processing pipelines, where the last successful interval creation for the

pipeline is recorded. The timestamp records are also used to store the current

wfdisc.endtime on a station-by-station basis. Updates to these timestamp records

are handled by the database triggers wfdisc_endtime and wfdisc_NVIAR_endtime.

Application of the triggers allows substantial performance gains when trying to

query wfdisc.endtime by station, because there are very few records in the times-

tamp table compared to the wfdisc table.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
FIGURE 32. ENTITY RELATIONSHIP OF SAIC DACS CSCS

interval

class
name
time

endtime
intvlid

intvlid
class
name
time
endtime
state
moddate
lddate

timestamp

proclass
procname

procclass
procname
time
lddate

request

reqid
sta

chan
start_time
end_time

orid
evid

reqid
sta
chan
array
orid
evid
start_time
end_time
class
state
statecount
complete
requestor
modtime
modauthor
lddate

lastid

keyname

keyname
keyvalue
lddate

wfdisc

sta
chan
time
wfid

chanid

sta
chan
time
wfid
chanid
jdate
endtime
nsamp
samprate
calib
calper
instype
segtype
datatype
clip
dir
dfile
foff
commid

affiliation

net
sta

net
sta
lddate

intvlid-keyvalue/
keyname=intvlid

endtime/sta-time/procname
procclass=DLTRIGGER
121

i o n C o n t r o l S y s t e m (D A C S)

1

122

▼

Chapter 4:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Database Schema

Table 5 shows the database tables used by the DACS. For each table used, the

third column shows the purpose for reading or writing each attribute for each rele-

vant CSC.

TABLE 5: DATABASE USAGE BY DACS

Table Action Usage by CSC

affiliation read tis_server, tiseg_server: net and sta are read to map
a network name to station names and station name
to station sites.

interval read, write Data Monitors:1 time, endtime, class, state, and
intvlid are read, created, and updated by the inter-
val creation algorithms.

dbserver: state is updated via tuxshell service calls
to dbserver.

WorkFlow: interval records are read and displayed
graphically, and state is updated as part of interval
reprocessing.

lastid read, write Data Monitors:1 key value and keyname are used
to ensure unique intvlid’s for each interval creation
via a lock-for-update database operation.

request read, write WaveGet_server: array, chan, start_time, end_time,
state, statecount, and requestor are used to priori-
tize and request auxiliary waveform acquisition or
terminate repeated and unsatisfied requests.

tiseg_server: array, start_time, end_time, and state
are used to initiate auxiliary station processing for
requests that are complete as defined by state.2

dbserver: state is updated via tuxshell service calls
to dbserver.

WorkFlow: request records are read and displayed
graphically.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design
timestamp read, write Data Monitors:1 procclass, procname, and time are
used to track interval creation progress and retrieve
current wfdisc station endtime.

wfdisc_endtime, wfdisc_NVIAR_endtime: These
databases trigger update time upon any wfdisc.end-
time update.

wfdisc read tis_server, tiseg_server: time, endtime, sta, chan are
used to determine data availability for continuous
and auxiliary data stations.

1. Data Monitors include tis_server, tiseg_server, ticron_server, tin_server, and
WaveGet_server.

2. The IDC does not use the request-based interval creation feature of tiseg_server.

TABLE 5: DATABASE USAGE BY DACS (CONTINUED)

Table Action Usage by CSC
123

i o n C o n t r o l S y s t e m (D A C S)

1

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 5: Requ i rements

This chapter describes the requirements of the DACS and includes the following

topics:

■ Introduction

■ General Requirements

■ Functional Requirements

■ CSCI External Interface Requirements

■ CSCI Internal Data Requirements

■ System Requirements

■ Requirements Traceability
i o n C o n t r o l S y s t e m (D A C S)

1 125

S o f t w a r e
I D C D O C U M E N T A T I O N

126
Chapter 5: Requ i rements

INTRODUCT ION

The requirements of the DACS can be categorized as general, functional, or system

requirements. General requirements are nonfunctional aspects of the DACS. These

requirements express goals, design objectives, and similar constraints that are qual-

itative properties of the system. The degree to which these requirements are actu-

ally met can only be judged qualitatively. Functional requirements describe what

the DACS is to do and how it is to do it. System requirements pertain to general

constraints, such as compatibility with other IDC subsystems, use of recognized

standards for formats and protocols, and incorporation of standard subprogram

libraries.

GENERAL REQUIREMENTS

The DACS capabilities derive from the twin needs to manage the processes in the

system and to add an additional layer of fault tolerance. The process management

includes starting, stopping, monitoring, communicating and tasking (assigning

work). The fault tolerance includes reconfiguring Automatic Processing in the

event of a computer failure.

The DACS shall provide the following modes in support of Automatic Processing

and Interactive Processing: shutdown, stop, fast-forward, play, slow-motion,

rewind, and pause. Table 6 describes the modes. Fast-forward mode (catch-up

mode) is configured to add more front-end automatic processing when recovering

from a significant time period of complete data outage or system down-time.

Rewind mode allows for reprocessing of the most recent data by resetting the

database to an earlier time.1 Pause mode allows current processing tasks to finish

prior to a shutdown of the system.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Requirements

1. Slow-motion is used to maintain time-critical automatic processing when the full processing load exceeds
the processing capacity.

TABLE 6: DACS OPERATIONAL MODES

Requirement
Number Mode Automatic Processing Interactive Processing

1. shutdown no automatic processing,
DACS not running

no interactive processing,
DACS not running

2. stop no automatic processing, all
automatic processing sys-
tem status saved in stable
storage, all automatic pro-
cessing programs termi-
nated, all DACS processes
idle

full interactive processing

3. fast-forward full automatic processing,
automatic processing con-
figured for burst data (for
example, GA replaced by
additional instances of DFX)

full interactive processing

4. play full automatic processing,
automatic processing con-
figured for normal opera-
tion

full interactive processing

5. slow-motion partial automatic process-
ing, automatic processing
configured to run only a
core subset of automatic
processing tasks

full interactive processing

6. rewind full automatic processing
after resetting the database
to an earlier time

full interactive processing

7. pause completion of active auto-
matic processing

full interactive processing
127

i o n C o n t r o l S y s t e m (D A C S)

1

128

▼

Chapter 5:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
An additional general requirement is:

8. The DACS shall be started at boot time by a computer on the IDC local area

network. The boot shall leave the DACS in the stop state. After it is in this

state, the DACS shall be operational and unaffected by the halt or crash of any

single computer on the network.

FUNCT IONAL REQUIREMENTS

This section provides specific requirements for the DACS. Each subparagraph

describes a group of related requirements. The requirements are grouped into the

functional categories of availability management, message passing, workflow

management, system monitoring, and reliability.

Ava i l ab i l i t y Management

Availability management refers to the availability of UNIX processes. An availability

manager is a service that starts and stops processes according to predefined rules

and on-the-fly operator decisions. The rules usually specify a certain number of

processes to keep active; if one should terminate then a replacement is to be

started.

9. The DACS shall be capable of starting and stopping any configured user-level

process on any computer in the IDC LAN. The DACS shall provide an interface

to an operator that accepts process control commands. A single operator

interface shall allow process control across the network.

10. The DACS shall maintain (start and restart) a population of automated and

interactive processes equal to the number supplied in the DACS configuration

file. The DACS shall also monitor its internal components and maintain them

as necessary.

11. The DACS shall start and manage processes upon messages being sent to a

named service. If too few automated processes are active with the name of

the requested service, the DACS shall start additional processes (up to a limit)
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Requirements
that have been configured to provide that service. If an interactive process is

not active, the DACS shall start a single instance of the application when a

message is sent to that application.

12. The DACS shall be fully operational in stop mode within 10 minutes of net-

work boot.

13. The DACS shall detect process failures within 30 seconds of the failure and

server hardware failures within 60 seconds.

14. The DACS shall start new processes and replace failed processes within five

seconds. This time shall apply to both explicit user requests and the automatic

detection of a failure.

15. The DACS shall be capable of managing (starting, monitoring, terminating) 50

automated and interactive processing programs on each of up to 50 comput-

ers.

16. The DACS shall continue to function as an availability manager in the event of

defined hardware and software failures. “Reliability” on page 134 specifies

the DACS reliability and continuous operations requirements.

Message Pass ing

Message passing in the context of the DACS refers to the transmission of messages

between cooperating interactive applications. Message passing is a service pro-

vided by the DACS to processes that operate outside the scope of the DACS. The

DACS does not interpret or otherwise operate on the message.

17. The DACS shall provide a message passing service for the interactive process-

ing system. The message passing service shall have the attributes of being reli-

able, asynchronous, ordered, scoped, point-to-point, and location transparent.

The message passing service shall provide an API to the interactive processing

programs. Each attribute is specified in the following subparagraph.
129

i o n C o n t r o l S y s t e m (D A C S)

1

130

▼

Chapter 5:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
17.1 Reliable: messages are not lost and no spurious messages are created. A

consequence of reliable messages is that the same message may be

delivered more than once if a process reads a message, crashes,

restarts, then reads a message again.

17.2 Asynchronous: sending and receiving processes need not be running or

communicating concurrently.

17.3 Ordered: messages are delivered in the order they were sent (FIFO).

17.4 Scoped: messages sent and received by one interactive user are not

crossed with messages sent and received by another user.

17.5 Point-to-point: There is a single sender and a single receiver for each

message. The DACS need not support broadcast or multicast, although

sending processes may simulate either by iteratively sending the same

message to many receivers (one-to-many). Similarly, many-to-one

messaging is supported by multiple point-to-point messaging, that is,

receiving processes may receive separate messages from many senders.

17.6 Location transparency: sending and receiving processes do not need to

know the physical location of the other. All addressing of messages is

accomplished through logical names.

17.7 Application programming interface: the message service will be avail-

able to the Interactive Processing programs via a software library linked

at compile time.

18. The message passing service shall provide an administrative control process to

support administrative actions. The administrative actions shall allow a user to

add or delete messages from any message queue and to obtain a list of all pro-

cesses registered to receive messages.

19. The DACS shall deliver messages within one second of posting given that net-

work utilization is below 10 percent of capacity.

20. If the receiving process is not active or is not accepting messages, the DACS

shall hold the message indefinitely until delivery is requested by the receiving

process (or deleted by an administrative control process).
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Requirements
21. Interactive processing programs may request the send or receive of messages

at any time. Multiple processes may simultaneously request any of the mes-

sage services.

22. The DACS shall be capable of queuing (holding) 10,000 messages for each

process that is capable of receiving messages.

23. The size limit of each message is 4,096 (4K) bytes in length.

24. The DACS shall continue to function as a message passing service in the event

of defined hardware and software failures. The DACS reliability and continu-

ous operations requirements are specified in “Reliability” on page 134.

Workflow Management

Workflow management in the context of the DACS refers to the marshalling of

data through data processing sequences. The steps (tasks) in a data processing

sequence are independent of each other with the exception of order. That is, if

step B follows step A, then step B may be initiated any time after the successful

termination of step A. The independence of the processing tasks allows task B to

run on a different computer than task A.

Workflow management allows for different types of ordering. Sequential ordering

requires that one task run before another task. Parallel ordering allows two tasks to

execute simultaneously, yet both must finish before the next task in the sequence

may begin. Conditional ordering allows one of two tasks to be selected as the next

task in the sequence based on the results of the current processing task. Finally, a

compound ordering allows for a sub-sequence of tasks within a task sequence. A

compound statement requires all internal processing steps to finish before the next

interval is submitted to the compound statement.

25. The DACS shall provide workflow management for the Automatic Processing.

Workflow management ensures that data elements get processed by a

sequence of Automatic Processing programs. A data element is a collection of

data, typically a discrete time interval of time-series data, that is maintained by

processes external to the DACS. The DACS workflow management shall cre-
131

i o n C o n t r o l S y s t e m (D A C S)

1

132

▼

Chapter 5:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
ate, manage, and destroy internal references to data elements. The DACS ref-

erences to data elements are known as intervals. The capabilities of the

workflow management are enumerated in the following subparagraphs.

25.1 The DACS shall provide a configurable method of defining data ele-

ments. The parametric definition of data elements shall include at least

a minimum and maximum time range, a percentage of data required, a

list of channels/stations, and a percentage of channels and/or stations

required. If the data in an interval are insufficient to meet the require-

ments for an interval, then the data element shall remain unprocessed.

In this case, the DACS shall identify the interval as insufficient and pro-

vide a means for the operator to manually initiate a processing

sequence.

25.2 The DACS shall provide a configurable method of initiating a workflow

sequence. The DACS workflow management shall be initiated upon

either data availability, completion of other data element sequences, or

the passage of time.

25.3 Workflow management shall allow sequential processing, parallel pro-

cessing, conditional branching, and compound statements.

25.4 Workflow management shall support priority levels for data elements.

Late arriving or otherwise important data elements may be given a

higher priority so that they receive priority ordering for the next avail-

able Automatic Processing program. Within a single priority group, the

DACS shall manage the order among data elements by attributes of the

data, including time and source, and by attributes of the interval,

including elapsed time in the queue. The ordering algorithm shall be an

option to the operator.

25.5 Workflow management shall provide error recovery per data element

for failures of the Automatic Processing programs. Error recovery shall

consist of a limited number of time-delayed retries of the failed Auto-

matic Processing program. If the retry limit is reached, the DACS shall

hold the failed intervals in a failed queue for manual intervention.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Requirements
25.6 The DACS shall initiate workflow management of each data element

within 5 seconds of data availability.

25.7 Workflow management shall deliver intervals from one Automatic Pro-

cessing program to the next program in the sequence within five sec-

onds of completion of the first program. If the second program is busy

with another interval, the workflow management shall queue the inter-

val and deliver the interval with the highest priority in the queue within

5 seconds of when the second program becomes available.

26. The DACS shall be capable of queuing (holding) 10,000 intervals for each

active Automatic Processing program (there can be up to fifty processes per

computer). The size and composition of an interval is left as a detail internal to

the DACS.

27. The DACS shall continue to function as a workflow manager in the event of

defined hardware and software failures. The DACS reliability and continuous

operations requirements are specified in “Reliability” on page 134.

Sys tem Mon i to r ing

System monitoring in the context of the DACS refers to monitoring of DACS-

related computing resources. System monitoring does not include monitoring of

operating systems, networks, or hardware except for the detection and

workaround of computer crashes.

28. The DACS shall provide system monitoring for computer status, process sta-

tus, workflow status, and the message passing service.

29. The DACS shall monitor the status of each computer on the network, and the

status of all computers shall be visible on the operator’s console, current to

within 30 seconds.

30. The DACS shall provide an interface to indicate the run-time status of all pro-

cesses relevant to Automatic Processing and Interactive Processing. This set of

processes includes database servers and DACS components.
133

i o n C o n t r o l S y s t e m (D A C S)

1

134

▼

Chapter 5:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
30.1 The DACS shall provide a display indicating the last completed auto-

matic processing step for each interval within the workflow manage-

ment.

30.2 The same display shall provide a summary that indicates the processing

sequence completion times for all intervals available to Interactive Pro-

cessing (that is, more recent than the last data migration).

31. The DACS shall provide a graphical display of the status of message passing

with each Interactive Processing program. The status shall indicate the interac-

tive processes capable of receiving messages and whether there are any mes-

sages in the input queue for each receiving process.

32. The DACS displays shall remain current within 60 seconds of actual time. The

system monitoring displays shall provide a user-interface command that

requests an update of the display with the most recent status.

33. The DACS run-time status display shall be capable of displaying all processes

managed by the availability manager. The DACS message passing display shall

be capable of displaying the empty/non-empty message queue status of all

processes that can receive messages. The DACS workflow management dis-

play shall be capable of displaying all intervals currently managed by the

workflow management.

34. The DACS shall provide these displays simultaneously to 1 user, although

efforts should be made to accommodate 10 additional users.

35. The DACS shall continue to function as a system monitor in the event of

defined hardware and software failures. The DACS reliability and continuous

operations requirements are described in “Reliability” on page 134.

Re l i ab i l i t y

Reliability in the context of the DACS refers primarily to the integrity of the work-

flow management and message passing, and secondarily to the continued (but

perhaps limited) operation of the DACS during system failures. The DACS is one of

the primary providers of computing reliability in the IDC System.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Requirements
The integrity of the DACS guarantees that messages are delivered exactly once,

and Automatic Processing is invoked exactly once for each data element. Mes-

sages and data sequences are preserved across system failures. When forced to

choose, the DACS takes the conservative approach of preserving data at the

expense of timely responses.

The DACS provides continued operation in the event of defined system failures.

The DACS operation may be interrupted briefly as replacement components are

restarted, possibly on other computers. The DACS monitors and restarts both

internal components and Automatic Processing programs. Interactive programs are

not restarted because it is not known whether the user intentionally terminated a

program.

36. The DACS shall deliver each message exactly once, after the successful post-

ing of the message by the sending process.

37. The DACS shall execute Automatic Processing programs exactly once for each

data element. A program execution is a transaction consisting of start, run,

and exit. If the transaction aborts before completion of the exit, the DACS

shall retry the transaction a limited (configurable) number of times.

38. The DACS shall function as a system in the event of defined hardware and

software failures. The failure model used by the DACS is given in Table 7. For

failures within the model, the DACS shall mask and attempt to repair the fail-

ures. Failure masking means that any process depending upon the services of

the DACS (primarily the Automatic and Interactive Processing software)

remains unaffected by failures other than to notice a time delay for responses

from the failed process. Failures outside the failure model may lead to unde-

fined behavior (for example, a faulty ethernet card is undetectable and unre-

pairable by software).

39. The DACS shall detect failures and respond to failures within specified time

limits. The time limits are given in Table 7.
135

i o n C o n t r o l S y s t e m (D A C S)

1

136

▼

Chapter 5:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
40. The DACS shall detect and respond to failures up to a limited number of fail-

ures. The failure limits are given in Table 7. For failures over the limit, the

DACS shall attempt the same detection and response, but success is not guar-

anteed.

41. Reliability of a system or component is relative to a specified set of failures

listed in Table 7. The first column indicates the types of failures that the DACS

shall detect and recover from. The second column lists the maximum rate of

failures guaranteed to be handled properly by the DACS; however, the DACS

shall strive to recover from all errors of these types regardless of frequency.

The third column lists the upper time bounds on detecting and recovering

from the indicated failures. Again, the DACS shall strive to attain the best pos-

sible detection and recovery times.

TABLE 7: FAILURE MODEL

No. Failure Type Maximum Failure Rate
Maximum Time to
Recover

41.1 workstation crash failure one per hour,
non-overlapping

60 seconds for detec-
tion and

5 seconds to initiate
recovery

41.2 process crash failure five per hour, onset at
least 5 minutes apart

5 seconds for detection
and

5 seconds to initiate
recovery

41.3 process timing failure–all
but interactive applica-
tions

five per hour, onset at
least 5 minutes apart

5 seconds for detection
and

5 seconds to initiate
recovery

41.4 process timing failure–
interactive applications

not detectable user detection and
recovery

41.5 all others undefined undefined
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Requirements
CSC I EXTERNAL INTERFACE
REQUIREMENTS

The DACS shall have four direct external interfaces and shall operate on an

assumed model of data availability. The interfaces are specified in the following

paragraphs.

The DACS interfaces with the Database Management System through the GDI,

with the operator through an operator interface, with the Interactive Processing

through a messaging interface, and with the host operating system through sys-

tem utilities. The exact data model exported by the Database Management System

is critical to the DACS.

42. The DACS shall interface with the ORACLE database through the GDI.

43. The DACS shall read from the wfdisc table. The DACS shall assume wfdisc

table entries will follow the data model described in [IDC5.1.1Rev2].

44. The DACS shall insert and update entries in the interval table, which is used as

a monitoring point for the Automatic Processing system. As part of reset

mode, the DACS may delete or alter entries in the interval table to force repro-

cessing of recent data elements. Purging of the interval table is left to pro-

cesses outside the DACS.

45. The DACS shall interface with the wfdisc table of the ORACLE database. The

software systems of the Data Services SCSI shall acquire the time-series data

and populate the wfdisc table. The DACS shall assume a particular model for

wfdisc record insertion and updates. The DACS shall be capable of accepting

data in the model described by the following subparagraphs.

45.1 The IDC Continuous Data system acquires seismic, hydroacoustic, and

infrasonic waveforms from multiple sources. The data quantity is 5–10

gigabytes of data per day arriving in a near-continuous fashion. The

DACS nominally forms intervals of segments of 10 minutes in length.

However, during recovery of a data acquisition system failure, the

DACS forms intervals of up to one hour in length. The DACS can be

configured to form intervals of practically any size.
137

i o n C o n t r o l S y s t e m (D A C S)

1

138

▼

Chapter 5:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
45.2 The data from each source nominally arrive in piecewise increasing time

order. Data delivery from an individual station may be interrupted and

then resumed. Upon resumption of data delivery, the data acquisition

system may provide current data, late data, or both. Current data

resumes with increasing time, and late data may fill in a data gap in

either increasing FIFO or decreasing LIFO time order from the end

points of the time gap.

Figure 33 shows an example where current (continuous) data are inter-

rupted and then resumed, which is then followed by examples of both

FIFO and LIFO late data arrival. In (A) continuous data arrive with

advancing time. (B) Data are interrupted; no data arrive. (C) Data begin

to arrive again starting with the current time. (D) Both late data and

continuous data arrive in tandem; the late data fills in the data gap in

FIFO order. (E) Both late data and continuous data arrive in tandem;

the late data fill in the data gap in LIFO order.

The data acquisition system defines each channel of a seismic station,

array, hydroacoustic sensor, or infrasonic sensor as a separate data

source. The result is that some channels may be delivered later than

other channels from the same station or the channels might not be

delivered at all.

45.3 Data quality is a prime concern of the IDC mission; however, the DACS

makes no determination of data quality. Any data that are available

shall be processed.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Requirements
FIGURE 33. DATA ARRIVAL EXAMPLE

advancing time

data
amplitude

advancing time

data
amplitude

data interruption

data
amplitude

data resumption

advancing time

(A) continuous data (B) interruption of data

(C) resumption of continuous data after an interruption

data
amplitude

late data arrival (FIFO)

(D) continuous data and resumption of FIFO late data (heavy lines)

advancing time

continuous

data
amplitude

 late data arrival (LIFO)

(E) continuous data and resumption of LIFO late data (heavy lines)

advancing time

continuous data

data
139

i o n C o n t r o l S y s t e m (D A C S)

1

140

▼

Chapter 5:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
46. The DACS shall interface with the Interactive Processing programs through a

message passing API. The DACS shall provide this interface as a library for use

by the developers of the Interactive Processing programs. The library shall

contain entry points to allow processes to register, subscribe, unregister, send,

poll, receive, replay and delete messages. The DACS shall offer several types

of notification when new messages are sent to a process. The API is specified

in more detail in the following list.

46.1 register–connect to messaging system; arguments specify logical name

and physical location of process; method of notification for waiting

messages

46.2 subscribe–specify types of messages to read; argument lists message

types to read

46.3 unregister–disconnect from messaging system; argument indicates

whether to keep or discard unread messages

46.4 send–send a message to another process by logical name; arguments

specify message type, message data, and return address of sender

46.5 poll–request empty/non-empty status of incoming message queue

46.6 receive–receive a message; argument specifies message types to read

46.7 delete–delete messages from queue; argument specifies most recent or

all messages

47. The DACS shall offer three types of notification of new messages: none, call-

back invocation, or an interrupt. The type shall be chosen by a process when it

registers. With none, the process shall call the poll function to check on mes-

sage availability. With callback invocation, the process shall register a callback

procedure to be executed when a message arrives. With an interrupt, the pro-

cess shall rely on the interrupt (such as activity on a UNIX file descriptor) to

indicate when a message is waiting.

48. The DACS shall interface with the UNIX operating system to start Automatic

Processing programs and wait on the termination of these programs. Pro-

cesses started by the DACS shall inherit the system privileges of the DACS,

including the process group, environment, and file system permissions.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Requirements
49. The DACS shall collect the exit or abnormal termination status of processes it

starts. The exit status shall be used to determine success or failure of the Auto-

matic Processing program. Processes shall use a defined set of exit codes to

indicate various levels of success and another set of codes to indicate different

types of failure.

50. The DACS shall interface with an operator or operators. The DACS shall pro-

vide monitoring displays and control interfaces. The monitoring displays shall

provide system monitoring for computer status, process status, workflow sta-

tus, and the message passing service. (The information presented with each

monitoring display is specified in “System Monitoring” on page 133.) The

control interface shall enable the operator to take actions on the DACS. The

control interface supports the functions listed in the following subparagraphs.

50.1 The DACS control interface shall allow selection from among the auto-

matic processing modes listed in Table 6 on page 127.

50.2 The DACS control interface shall allow run-time reconfiguration of the

host computer network. Reconfiguration may take the form of added,

deleted, or upgraded workstations. The DACS shall allow an operator

to dynamically identify the available workstations. When a workstation

is removed from service, the DACS shall migrate all processes on that

workstation to other workstations. The time allowed for migration shall

be the upper run-time limit for the Automatic Processing programs. In

other words, running programs shall be allowed to complete before the

migration occurs.

50.3 The DACS control interface shall allow run-time reconfiguration of the

DACS programs. Reconfiguration shall allow an increase, decrease, or

migration of Automatic Processing programs.

50.4 The DACS control interface shall allow access to the availability man-

ager for starting or stopping individual DACS and Automatic Processing

programs.

50.5 The DACS control interface shall allow manual processing and repro-

cessing of data elements through their respective sequences.

51. The DACS shall acquire time from a global time service.
141

i o n C o n t r o l S y s t e m (D A C S)

1

142

▼

Chapter 5:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
CSC I INTERNAL DATA
REQUIREMENTS

52. The DACS shall maintain a collection of intervals (data element references)

and shall update the status of intervals in the interval database table.

SYSTEM REQUIREMENTS

The DACS shall be configurable.

53. The implementation of the DACS shall allow for configuration data of the

number and type of computers on the network, and the number of auto-

mated processes of each type allowed to execute on each computer type.

The implementation of the DACS also requires the execution parameters for

each process in the Automated and Interactive Processing.

54. Only authorized users shall be allowed to initiate processing. Unauthorized

requests shall be rejected and logged. The DACS shall require passwords from

authorized users at login.

55. The DACS shall operate in the IDC environment.

56. The DACS shall operate in the same hardware environment as the IDC.

57. The DACS requires extensive database queries to detect new wfdisc records.

These queries will impact the database server. Otherwise, the DACS shall con-

sume negligible hardware resources.

58. Similarly, the DACS must share the same software environment as the rest of

the IDC. While this environment is not exactly defined at this time, it is likely

to include:

■ Solaris 7 or 8

■ ORACLE 8.x

■ X Window System X11R5 or later

■ TCP/IP network utilities

59. The DACS shall adhere to ANSI C, POSIX, and SQL standards.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Requirements
60. The DACS shall use common UNIX utilities (for example, cron, sendmail) and

system calls (for example, sockets, exec) whenever possible, to take advan-

tage of widespread features that shall aid portability. Vendor-specific UNIX

utilities shall be isolated into separate modules for identification and easy

replacement should the need arise.

61. The DACS shall implement middleware layers to isolate third-party software

products and protocol standards.

62. The DACS shall implement the functions of workflow management, availabil-

ity management, inter-process communications, and system monitoring as

separate stand-alone programs.

63. The DACS shall use COTS for internal components where practical. Practical in

this situation means where there is a strong functional overlap between the

DACS requirements and COTS capabilities.

64. The DACS shall be designed to scale to a system twice as large as the initial

IDC requirements without a noticeable degradation in time to perform the

DACS functions.

65. The DACS requires a capable UNIX system administrator for installation of the

DACS components and system-level debugging of problems such as file sys-

tem full, insufficient UNIX privileges, and network connectivity problems.

66. The DACS shall be delivered with a System Users Manual that explains the

operations and run-time options of the DACS. The manual shall also specify all

configuration parameters of the DACS. The DACS shall only require a user-

level prior understanding of UNIX and Motif.

67. The DACS shall be delivered electronically.

68. The DACS capabilities of workflow management and message passing are

ranked equally high in terms of criticality. These capabilities shall function in

the event of system failures. The functions of availability management and

system monitoring rank next in order of importance. The DACS shall continue

to perform the first set of functions even if the second set of functions are

unavailable for any reason.
143

i o n C o n t r o l S y s t e m (D A C S)

1

144

▼

Chapter 5:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
REQUIREMENTS TRACEABIL ITY

Tables 8 through 16 trace the requirements of the DACS to components and

describe how the requirements are fulfilled.

TABLE 8: TRACEABILITY OF GENERAL REQUIREMENTS

Requirement How Fulfilled

1 Operational Mode: shutdown

Automatic Processing: no automatic
processing, DACS not running

Interactive Processing: no interactive
processing, DACS not running

For Automatic Processing the DACS
can be shutdown under operator
control using tuxpad (scripts: tuxpad
and schedule_it) or a Tuxedo admin-
istration utility and schedclient.

For Interactive Processing this
requirement is fulfilled the same as
for Automatic Processing although in
practice the operators tend not to
have to administer the DACS because
it automatically starts on machine
boot and normally requires zero
administration. The crInteractive script
is also used by the operator to adminis-
ter Interactive Processing instance(s).

2 Operational Mode: stop

Automatic Processing: no automatic
processing, all automatic processing
system status saved in stable storage,
all automatic processing programs
terminated, all DACS processes idle

Interactive Processing: full interactive
processing

For Automatic Processing the DACS
can be stopped under operator con-
trol using tuxpad (scripts tuxpad and
schedule_it) or a Tuxedo administra-
tion utility and schedclient. In the
stop mode, all of the DACS is termi-
nated except for the Tuxedo adminis-
tration servers (for example, BBL) on
each DACS machine.

For Interactive Processing this
requirement is fulfilled the same as
above and also normally is never
required.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Requirements
3 Operational Mode: fast-forward

Automatic Processing: full automatic
processing, automatic processing
configured for burst data (for exam-
ple, GA replaced by additional
instances of DFX)

Interactive Processing: full interactive
processing

For Automatic Processing the DACS
provides extensive support for scaling
the number of machines, servers, and
services as well as such resources that
are active at any given time. Fast-for-
ward can be displayed (via tuxpad)
by deactivating or shutting down one
type of server and activating or boot-
ing another type of server(s) (for
example, GA replaced by additional
instances of DFX).

For Interactive Processing this
requirement is fulfilled the same as
above, although this processing
mode is not generally applicable to
interactive processing.

4 Operational Mode: play

Automatic Processing: full automatic
processing, automatic processing
configured for normal operation

Interactive Processing: full interactive
processing

For Automatic Processing the play
processing mode is usually initiated
by starting the scheduling of the data
monitor servers. This is accomplished
via the kick command to the sched-
uling system typically using the tux-
pad schedule_it script.

For Interactive Processing the play
processing mode is the default and
automatic processing mode follow-
ing the DACS startup (following ana-
lyst workstation boot).

TABLE 8: TRACEABILITY OF GENERAL REQUIREMENTS (CONTINUED)

Requirement How Fulfilled
145

i o n C o n t r o l S y s t e m (D A C S)

1

146

▼

Chapter 5:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
5 Operational Mode: slow-motion

Automatic Processing: partial auto-
matic processing, automatic process-
ing configured to run only a core
subset of automatic processing tasks

Interactive Processing: full interactive
processing

For Automatic Processing the DACS
provides extensive support for scaling
the number of machines, servers, and
services as well as which of these
resources are active at any given
time. Slow-motion can be displayed
(via tuxpad) by deactivating or shut-
ting down a class or servers (for
example, network processing) or
reducing the number of a particular
type of server (for example, reduce
the number of DFX instances). In
addition, the tuxpad schedule_it
script can be used to stall data moni-
tor instances to eliminate or reduce
the creation of new pipeline process-
ing sequences.

For Interactive Processing this
requirement is fulfilled the same as
above although this processing mode
is not generally applicable to Interac-
tive Processing.

6 Operational Mode: rewind

Automatic Processing: full automatic
processing after resetting the data-
base to an earlier time

Interactive Processing: full interactive
processing

For Automatic Processing the rewind
processing mode requires an operator
to delete intervals in the interval table
or set them to state skipped where
applicable so that data monitor serv-
ers will completely reprocess a time
period of data.1

For Interactive Processing this mode
is not applicable as far as the DACS is
concerned. Repeated Event Review is
controlled by the analyst.

TABLE 8: TRACEABILITY OF GENERAL REQUIREMENTS (CONTINUED)

Requirement How Fulfilled
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Requirements
7 Operational Mode: pause

Automatic Processing: completion of
active automatic processing

Interactive Processing: full interactive
processing

For Automatic Processing the pause
mode is displayed by stalling schedul-
ing of the data monitor servers using
the tuxpad schedule_it script and
possibly the shutdown of the DACS
TMQFORWARD servers to stop pro-
cessing of queued intervals.

For Interactive Processing this
requirement is fulfilled the same as
above although this processing mode
is not generally applicable to interac-
tive processing.

8 The DACS shall be started at boot
time by a computer on the IDC local
area network. The boot shall leave
the DACS in the stop state. After it is
in this state, the DACS shall be opera-
tional and unaffected by the halt or
crash of any single computer on the
network.

The DACS is booted by the operator
usually via tuxpad, and the DACS is
effectively in the stop or pause mode
awaiting operator action to initiate
the play mode. The DACS can survive
the crash of a single computer in
most cases. Single points of failure
include the database server and the
file logging server, which are
accepted single points of failure. The
scheduling system queue server is a sin-
gle point of failure. This single point of
failure can be masked by migrating the
scheduling queue server to an existing
machine that is a single point of failure
such as the database server or file log-
ging server.

1. The rewind mode is also partially addressed by operator-assisted interval reprocessing by
WorkFlow. Full automatic reprocessing could be provided by the WorkFlow reprocessing
model by augmenting the existing scheme to support reprocessing of all intervals or all inter-
vals of a particular class for a specified range of time. However, this feature would have to be
consistent with the fact that application software must be able to repeat the processing
steps. Furthermore, reprocessing is also subject to IDC policy decisions, particularly where
intermediate or final processing results have been published or made available as IDC prod-
ucts.

TABLE 8: TRACEABILITY OF GENERAL REQUIREMENTS (CONTINUED)

Requirement How Fulfilled
147

i o n C o n t r o l S y s t e m (D A C S)

1

148

▼

Chapter 5:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
TABLE 9: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
AVAILABILITY MANAGEMENT

Requirement How Fulfilled

9 The DACS shall be capable of starting
and stopping any configured user-
level process on any computer in the
IDC LAN. The DACS shall provide an
interface to an operator that accepts
process control commands. A single
operator interface shall allow process
control across the network.

Any DACS process can be started or
stopped by the operator using tuxpad
or a Tuxedo administration utility.

10 The DACS shall maintain (start and
restart) a population of automated
and interactive processes equal to the
number supplied in the DACS config-
uration file. The DACS shall also
monitor its internal components and
maintain them as necessary.

Complete process monitoring includ-
ing boot and shutdown of all config-
ured processes as well as monitoring
and restart of all configured processes
is provided by the DACS via Tuxedo.

11 The DACS shall start and manage
processes upon messages being sent
to a named service. If too few auto-
mated processes are active with the
name of the requested service, the
DACS shall start additional processes
(up to a limit) that have been config-
ured to provide that service. If an
interactive process is not active, the
DACS shall start a single instance of
the application when a message is
sent to that application.

For Automatic Processing the Tuxedo
DACS generally starts servers and
keeps them running, so server startup
upon message send is not typically
required. However, server scaling is
supported wherein the number of
active servers advertising a given ser-
vice name can increase as the number
of queued messages increases.

For Interactive Processing the dman
client supports demand execution,
which starts a single application
instance upon a message send if the
application is not already running.

12 The DACS shall be fully operational in
stop mode within 10 minutes of net-
work boot.

For Automatic Processing the DACS
can take several minutes to com-
pletely boot across the LAN but the
time does not exceed 10 minutes.

For Interactive Processing the DACS
boots in approximately 30 seconds.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Requirements
13 The DACS shall detect process fail-
ures within 30 seconds of the failure
and server hardware failures within
60 seconds.

The DACS can be configured to
detect server and machine failures
well within the required specification.
The configuration is via the Tuxedo
ubbconfig file.

14 The DACS shall start new processes
and replace failed processes within
five seconds. This time shall apply to
both explicit user requests and the
automatic detection of a failure.

Same as above.

15 The DACS shall be capable of manag-
ing (starting, monitoring, terminat-
ing) 50 automated and interactive
processing programs on each of up to
50 computers.

The DACS can scale to the required
specification and beyond.

16 The DACS shall continue to function
as an availability manager in the
event of defined hardware and soft-
ware failures. “Reliability” on
page 134 specifies the DACS reliabil-
ity and continuous operations
requirements.

The DACS continues to function or
can be configured to function in the
face of most process and system fail-
ures. Exceptions include failure of the
database server and file logging
server machines, which are accepted
single points of failure.

TABLE 9: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
AVAILABILITY MANAGEMENT (CONTINUED)

Requirement How Fulfilled
149

i o n C o n t r o l S y s t e m (D A C S)

1

150

▼

Chapter 5:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N

TABLE 10: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:

MESSAGE PASSING

Requirement How Fulfilled

17 The DACS shall provide a message
passing service for the interactive
processing system. The message
passing service shall have the
attributes of being reliable, asynchro-
nous, ordered, scoped, point-to-
point, and location transparent. The
message passing service shall provide
an API to the interactive processing
programs. Each attribute is specified
in the following subparagraph.

The message passing requirements
are fulfilled by the DACS libipc API.
Location transparency (messaging
across machine or via the LAN) is fully
supported but not generally used at
the IDC.1

17.1 Reliable: messages are not lost and
no spurious messages are created. A
consequence of reliable messages is
that the same message may be deliv-
ered more than once if a process
reads a message, crashes, restarts,
then reads a message again.

This requirement is fulfilled via libipc
messaging, which is based on the
Tuxedo reliable queuing service.

17.2 Asynchronous: sending and receiving
processes need not be running or
communicating concurrently.

This requirement is fulfilled via libipc
messaging, which is based on the
Tuxedo reliable queuing service.

17.3 Ordered: messages are delivered in
the order they were sent (FIFO).

This requirement is fulfilled via libipc
messaging which is based on the Tux-
edo reliable queuing service.

17.4 Scoped: messages sent and received
by one interactive user are not
crossed with messages sent and
received by another user.

This requirement is fulfilled via libipc
messaging, which is based on the
Tuxedo reliable queuing service. Mes-
sage scoping is supported via queue
names that are scoped to application
name and session number. Multiple
analysts running a single machine
would have to run in their own ses-
sions. In general the operational
model is one analyst per machine and
it is up to analysts to manage their
own sessions within a single machine.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Requirements
17.5 Point-to-point: There is a single
sender and a single receiver for each
message. The DACS need not sup-
port broadcast or multicast, although
sending processes may simulate
either by iteratively sending the same
message to many receivers (one-to-
many). Similarly, many-to-one mes-
saging is supported by multiple point-
to-point messaging, that is, receiving
processes may receive separate mes-
sages from many senders.

All messaging is point-to-point but
with the required asychronous deliv-
ery wherein the Tuxedo queuing sys-
tem is the reliable message broker.

There is limited and specific support
for event/message broadcasting,
where libipc sends an event broad-
cast to the DACS dman client for
each message send and receive
within the interactive session.

The dman client also subscribes to
Tuxedo event broadcasts, which
announce the joining and departing
of a client of the interactive session.

17.6 Location transparency: sending and
receiving processes do not need to
know the physical location of the
other. All addressing of messages is
accomplished through logical names.

This requirement is fulfilled via libipc
messaging, which is based on the
Tuxedo reliable queuing service.

17.7 Application programming interface:
the message service will be available
to the Interactive Processing pro-
grams via a software library linked at
compile time.

This requirement is fulfilled via libipc
messaging, which is based on the
Tuxedo reliable queuing service.

18 The message passing service shall
provide an administrative control pro-
cess to support administrative
actions. The administrative actions
shall allow a user to add or delete
messages from any message queue
and to obtain a list of all processes
registered to receive messages.

This requirement is fulfilled by the
birdie client, which is a driver to test
libipc.

Most of these requirements, among
others, are also fulfilled by the dman
client. With dman, the analyst can
delete all messages but not individual
messages. Message addition is sup-
ported through message sends from
specific Interactive Tools within the
interactive session.

TABLE 10: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
MESSAGE PASSING (CONTINUED)

Requirement How Fulfilled
151

i o n C o n t r o l S y s t e m (D A C S)

1

152

▼

Chapter 5:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
19 The DACS shall deliver messages
within one second of posting given
that network utilization is below 10
percent of capacity.

Reliable queue messaging (disk and
transaction based messaging) within
the DACS can occur at least 10 times
per second.

20 If the receiving process is not active
or is not accepting messages, the
DACS shall hold the message indefi-
nitely until delivery is requested by
the receiving process (or deleted by
an administrative control process).

This requirement is fulfilled via libipc
messaging, which is based on the
Tuxedo reliable queuing service.

21 Interactive processing programs may
request the send or receive of mes-
sages at any time. Multiple processes
may simultaneously request any of
the message services.

This requirement is fulfilled via libipc
messaging, which is based on the
Tuxedo reliable queuing service.

22 The DACS shall be capable of queu-
ing (holding) 10,000 messages for
each process that is capable of receiv-
ing messages.

This requirement is fulfilled via the
Tuxedo reliable queuing service
which can be scaled well beyond the
specification.

23 The size limit of each message is
4,096 (4K) bytes in length.

This requirement is fulfilled via the
Tuxedo reliable queuing service,
which can be scaled beyond the spec-
ification.2

24 The DACS shall continue to function
as a message passing service in the
event of defined hardware and soft-
ware failures. The DACS reliability
and continuous operations require-
ments are specified in “Reliability” on
page 134.

This requirement is fulfilled via the
DACS’ ability to survive most failure
conditions as discussed previously.

1. Interactive Processing is configured to run on a stand-alone analyst machine; all Interactive
Tools and messages reside on a single machine.

2. The maximum message size was increased to 65,536 bytes for the Interactive Auxiliary Data
Request System. This increase deviates from the model of passing small referential data
between processes for both Interactive and Automatic Processing. The change was made
specifically for Interactive Processing. This change encourages a re-examination of the mes-
saging requirements: message size, message reliability, and so on.

TABLE 10: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
MESSAGE PASSING (CONTINUED)

Requirement How Fulfilled
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Requirements
TABLE 11: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
WORKFLOW MANAGEMENT

Requirement How Fulfilled

25 The DACS shall provide workflow
management for the Automatic Pro-
cessing. Workflow management
ensures that data elements get pro-
cessed by a sequence of Automatic
Processing programs. A data element
is a collection of data, typically a dis-
crete time interval of time-series data,
that is maintained by processes exter-
nal to the DACS. The DACS workflow
management shall create, manage,
and destroy internal references to
data elements. The DACS references
to data elements are known as inter-
vals. The capabilities of the workflow
management are enumerated in the
following subparagraphs.

This requirement is fulfilled in the
DACS by a number of components
and features including: reliable queu-
ing, transactions, process monitor-
ing, data monitor servers, tuxshell,
and so on.

25.1 The DACS shall provide a config-
urable method of defining data ele-
ments. The parametric definition of
data elements shall include at least a
minimum and maximum time range,
a percentage of data required, a list
of channels/stations, and a percent-
age of channels and/or stations
required. If the data in an interval are
insufficient to meet the requirements
for an interval, then the data element
shall remain unprocessed. In this case,
the DACS shall identify the interval as
insufficient and provide a means for
the operator to manually initiate a
processing sequence.

This requirement is fulfilled by the
DACS data monitor servers, specifi-
cally tis_server and tiseg_server, and
the ability to specify the required
parameters related to interval cre-
ation.

25.2 The DACS shall provide a config-
urable method of initiating a work-
flow sequence. The DACS workflow
management shall be initiated upon
either data availability, completion of
other data element sequences, or the
passage of time.

This requirement is fulfilled by the
DACS data monitor servers and the
ability to specify the required param-
eters related to interval creation.
153

i o n C o n t r o l S y s t e m (D A C S)

1

154

▼

Chapter 5:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
25.3 Workflow management shall allow
sequential processing, parallel pro-
cessing, conditional branching, and
compound statements.

This requirement for sequential pro-
cessing and compound processing is
fulfilled by the DACS process
sequencing function (TMQFOR-
WARD and tuxshell[s]). Distributed
parallel processing is achieved in part
by configuring or replicating like serv-
ers across machines and/or across
processors within a machine. Parallel
processing pipelines or sequences,
and conditional branching, are ful-
filled through the use of data monitor
servers. Data monitor server instances
create new pipeline sequences as a
function of specified availability crite-
ria. As such, parallel pipelines are bro-
ken or decomposed into multiple
sub-pipelines where each sub-pipe-
line is created by a specific data mon-
itor server instance. There is no
supported mechanism within Tuxedo
DACS to specify and process a com-
plex pipeline processing sequence as
one parameter or one process
sequence expression or function.

25.4 Workflow management shall support
priority levels for data elements. Late
arriving or otherwise important data
elements may be given a higher pri-
ority so that they receive priority
ordering for the next available Auto-
matic Processing program. Within a
single priority group, the DACS shall
manage the order among data ele-
ments by attributes of the data,
including time and source, and by
attributes of the interval, including
elapsed time in the queue. The order-
ing algorithm shall be an option to
the operator.

This requirement is fulfilled via the
DACS data monitor support for prior-
ity-based queuing and related sup-
port for interval creation that gives
preference to late arriving or other-
wise important data.1

Operator access to this support is
through data monitor parameter files.

TABLE 11: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
WORKFLOW MANAGEMENT (CONTINUED)

Requirement How Fulfilled
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Requirements
25.5 Workflow management shall provide
error recovery per data element for
failures of the Automatic Processing
programs. Error recovery shall consist
of a limited number of time-delayed
retries of the failed Automatic Pro-
cessing program. If the retry limit is
reached, the DACS shall hold the
failed intervals in a failed queue for
manual intervention.

This requirement is fulfilled by the
DACS tuxshell server.

25.6 The DACS shall initiate workflow
management of each data element
within 5 seconds of data availability.

Reliable queue messaging (disk- and
transaction-based messaging) within
the DACS can occur at least 10 times
per second, and workflow manage-
ment of each data element can be
initiated with the same frequency.
However, tis_server database queries
currently take about 20 seconds at
the IDC, and tis_server is currently
configured to run every 90 seconds.
Therefore, the worst case is in excess
of 100 seconds after data are avail-
able. The 5 second requirement is not
possible given the current database-
server dependence.

25.7 Workflow management shall deliver
intervals from one Automatic Pro-
cessing program to the next program
in the sequence within five seconds
of completion of the first program. If
the second program is busy with
another interval, the workflow man-
agement shall queue the interval and
deliver the interval with the highest
priority in the queue within 5 seconds
of when the second program
becomes available.

Same as above.

TABLE 11: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
WORKFLOW MANAGEMENT (CONTINUED)

Requirement How Fulfilled
155

i o n C o n t r o l S y s t e m (D A C S)

1

156

▼

Chapter 5:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
26 The DACS shall be capable of queu-
ing (holding) 10,000 intervals for
each active Automatic Processing
program (there can be up to fifty pro-
cesses per computer). The size and
composition of an interval is left as a
detail internal to the DACS.

This requirement is fulfilled via the
Tuxedo reliable queuing service,
which can be scaled well beyond the
specification.

27 The DACS shall continue to function
as a workflow manager in the event
of defined hardware and software
failures. The DACS reliability and con-
tinuous operations requirements are
specified in “Reliability” on
page 134.

This requirement is fulfilled via the
DACS’ ability to survive most failure
conditions, as discussed previously.

1. This feature has been at least partially implemented but has not been sufficiently tested to
date.

TABLE 12: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
SYSTEM MONITORING

Requirement How Fulfilled

28 The DACS shall provide system moni-
toring for computer status, process
status, workflow status, and the mes-
sage passing service.

This requirement is fulfilled in the
DACS through Tuxedo, WorkFlow,
tuxpad, and dman for the DACS cli-
ents and servers.

29 The DACS shall monitor the status of
each computer on the network, and
the status of all computers shall be
visible on the operator’s console, cur-
rent to within 30 seconds.

This requirement is fulfilled in the
DACS through Tuxedo, WorkFlow,
tuxpad, and dman for DACS clients
and servers.

TABLE 11: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
WORKFLOW MANAGEMENT (CONTINUED)

Requirement How Fulfilled
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Requirements
30 The DACS shall provide an interface
to indicate the run-time status of all
processes relevant to Automatic Pro-
cessing and Interactive Processing.
This set of processes includes data-
base servers and DACS components.

This requirement is fulfilled in the
DACS through tuxpad and dman, but
the database server is not monitored
because this is not a DACS process.

30.1 The DACS shall provide a display
indicating the last completed auto-
matic processing step for each inter-
val within the workflow
management.

This requirement is fulfilled by the
WorkFlow application.

30.2 The same display shall provide a sum-
mary that indicates the processing
sequence completion times for all
intervals available to Interactive Pro-
cessing (that is, more recent than the
last data migration).

Same as above.

31 The DACS shall provide a graphical
display of the status of message pass-
ing with each Interactive Processing
program. The status shall indicate the
interactive processes capable of
receiving messages and whether
there are any messages in the input
queue for each receiving process.

This requirement is fulfilled by the
dman client.

32 The DACS displays shall remain cur-
rent within 60 seconds of actual time.
The system monitoring displays shall
provide a user-interface command
that requests an update of the display
with the most recent status.

This requirement is fulfilled in general
because the DACS is always process-
ing in real time or near real time. Spe-
cifically, the DACS status at the
machine or server level is available in
real time via the tuxpad refresh but-
ton. WorkFlow updates on an opera-
tor-specified update interval or on
demand via a GUI selection.

TABLE 12: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
SYSTEM MONITORING (CONTINUED)

Requirement How Fulfilled
157

i o n C o n t r o l S y s t e m (D A C S)

1

158

▼

Chapter 5:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
33 The DACS run-time status display
shall be capable of displaying all pro-
cesses managed by the availability
manager. The DACS message passing
display shall be capable of displaying
the empty/non-empty message
queue status of all processes that can
receive messages. The DACS work-
flow management display shall be
capable of displaying all intervals cur-
rently managed by the workflow
management.

This requirement is fulfilled by tux-
pad, dman, qinfo, and WorkFlow.

34 The DACS shall provide these displays
simultaneously to 1 user, although
efforts should be made to accommo-
date 10 additional users.

Any number of users logged in as the
“Tuxedo” user can access tuxpad.
Typically, dman would only be
accessed by the analyst that is using
the interactive session that dman is
managing. WorkFlow can be viewed
by any number of users.

35 The DACS shall continue to function
as a system monitor in the event of
defined hardware and software fail-
ures. The DACS reliability and contin-
uous operations requirements are
described in “Reliability” on
page 134.

This requirement is fulfilled via the
DACS’ ability to survive most failure
conditions, as discussed previously.

TABLE 13: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
RELIABILITY

Requirement How Fulfilled

36 The DACS shall deliver each message
exactly once, after the successful
posting of the message by the send-
ing process.

This requirement is fulfilled via the
Tuxedo reliable queuing service,
which uses transactions to ensure
that each message is delivered only
once.

TABLE 12: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
SYSTEM MONITORING (CONTINUED)

Requirement How Fulfilled
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Requirements
37 The DACS shall execute Automatic
Processing programs exactly once for
each data element. A program execu-
tion is a transaction consisting of
start, run, and exit. If the transaction
aborts before completion of the exit,
the DACS shall retry the transaction a
limited (configurable) number of
times.

This requirement is fulfilled by the
DACS’ TMQFORWARD server and
transaction.

38 The DACS shall function as a system
in the event of defined hardware and
software failures. The failure model
used by the DACS is given in Table 7.
For failures within the model, the
DACS shall mask and attempt to
repair the failures. Failure masking
means that any process depending
upon the services of the DACS (pri-
marily the Automatic and Interactive
Processing software) remains unaf-
fected by failures other than to notice
a time delay for responses from the
failed process. Failures outside the
failure model may lead to undefined
behavior (for example, a faulty ether-
net card is undetectable and unre-
pairable by software).

This requirement is fulfilled via the
DACS ability to survive most failure
conditions as discussed previously.

39 The DACS shall detect failures and
respond to failures within specified
time limits. The time limits are given
in Table 7.

This requirement is fulfilled via the
DACS’ ability to survive most failure
conditions, as discussed previously.
No time limits have been specified,
but the DACS can be configured to
service most failure conditions and
recover from them in less than 10
seconds.

TABLE 13: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
RELIABILITY (CONTINUED)

Requirement How Fulfilled
159

i o n C o n t r o l S y s t e m (D A C S)

1

160

▼

Chapter 5:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
40 The DACS shall detect and respond
to failures up to a limited number of
failures. The failure limits are given in
Table 7. For failures over the limit, the
DACS shall attempt the same detec-
tion and response, but success is not
guaranteed.

This requirement is fulfilled via the
DACS’ ability to survive most failure
conditions, as discussed previously.
Or, if this requirement refers to appli-
cation failures, these failures are han-
dled as described by tuxshell.

41 Reliability of a system or component
is relative to a specified set of failures
listed in Table 7. The first column
indicates the types of failures that the
DACS shall detect and recover from.
The second column lists the maxi-
mum rate of failures guaranteed to
be handled properly by the DACS;
however, the DACS shall strive to
recover from all errors of these types
regardless of frequency. The third col-
umn lists the upper time bounds on
detecting and recovering from the
indicated failures. Again, the DACS
shall strive to attain the best possible
detection and recovery times.

This requirement is fulfilled via the
DACS’ ability to survive most failure
conditions as discussed previously.

41.1 workstation crash failure

Maximum Failure Rate: one per hour,
non-overlapping

Maximum Time to Recover: 60 sec-
onds for detection and 5 seconds to
initiate recovery

This requirement is fulfilled via the
DACS’ ability to survive a workstation
failure subject to the DACS being
configured with sufficient backup
servers to survive a single machine
failure. The specified detection and
recovery times can be met through
configuration of the ubbconfig
file.

41.2 process crash failure

Maximum Failure Rate: five per hour,
onset at least 5 minutes apart

Maximum Time to Recover: 5 sec-
onds for detection and 5 seconds to
initiate recovery

Same as above but at the process
level.

TABLE 13: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
RELIABILITY (CONTINUED)

Requirement How Fulfilled
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Requirements

41.3 process timing failure–all but interac-
tive applications

Maximum Failure Rate: five per hour,
onset at least 5 minutes apart

Maximum Time to Recover: 5 sec-
onds for detection and 5 seconds to
initiate recovery

To the extent that this requirement
refers to process time-outs, it is ful-
filled through tuxshell’s support for
child-process time-out management.
Otherwise, all process failures are
detected and automatically recovered
by the DACS as discussed previously.

41.4 process timing failure–interactive
applications

Maximum Failure Rate: not detect-
able

Maximum Time to Recover: user
detection and recovery

In general the analyst detects and
recovers from these failures. The
DACS for Interactive Processing does
include process monitoring and time-
out monitoring for tuxshell child pro-
cesses.

41.5 all others

Maximum Failure Rate: undefined

Maximum Time to Recover: unde-
fined

N/A

TABLE 14: TRACEABILITY OF CSCI EXTERNAL INTERFACE
REQUIREMENTS

Requirement How Fulfilled

42 The DACS shall interface with the
ORACLE database through the GDI.

All DACS access to the database
server is through the GDI.

43 The DACS shall read from the
wfdisc table. The DACS shall
assume wfdisc table entries will
follow the data model described
in [IDC5.1.1Rev2].

The DACS data monitor applications
tis_server and tiseg_server read the
wfdisc table. Access to the table is
fully compatible with the published
database schema.

TABLE 13: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
RELIABILITY (CONTINUED)

Requirement How Fulfilled
161

i o n C o n t r o l S y s t e m (D A C S)

1

162

▼

Chapter 5:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
44 The DACS shall insert and update
entries in the interval table, which is
used as a monitoring point for the
Automatic Processing system. As part
of reset mode, the DACS may delete
or alter entries in the interval table to
force reprocessing of recent data ele-
ments. Purging of the interval table is
left to processes outside the DACS.

The DACS manages the interval table
to reflect the state of all automatic
processing. Interval deletion is not
generally supported, which is appar-
ently not a problem. Intervals are
changed as a part of interval repro-
cessing accessible through WorkFlow.

45 The DACS shall interface with the
wfdisc table of the ORACLE data-
base. The software systems of the
Data Services SCSI shall acquire the
time-series data and populate the
wfdisc table. The DACS shall assume
a particular model for wfdisc record
insertion and updates. The DACS
shall be capable of accepting data in
the model described by the following
subparagraphs.

The DACS reads the wfdisc table.
Access to the table is fully compatible
with the published database schema.

45.1 The IDC Continuous Data system
acquires seismic, hydroacoustic, and
infrasonic waveforms from multiple
sources. The data quantity is 5–10
gigabytes of data per day arriving in a
near-continuous fashion. The DACS
nominally forms intervals of segments
of 10 minutes in length. However,
during recovery of a data acquisition
system failure, the DACS forms inter-
vals of up to one hour in length. The
DACS can be configured to form
intervals of practically any size.

This requirement is fulfilled through
the DACS’ ability to specify parame-
ters for variable interval sizes under
varying conditions to tis_server.

TABLE 14: TRACEABILITY OF CSCI EXTERNAL INTERFACE
REQUIREMENTS (CONTINUED)

Requirement How Fulfilled
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Requirements
45.2 The data from each source nominally
arrive in piecewise increasing time
order. Data delivery from an individ-
ual station may be interrupted and
then resumed. Upon resumption of
data delivery, the data acquisition
system may provide current data, late
data, or both. Current data resumes
with increasing time, and late data
may fill in a data gap in either
increasing FIFO or decreasing LIFO
time order from the end points of the
time gap.

tis_server can handle all described
types of data delivery and can create
intervals in the order of current data
first.

45.3 Data quality is a prime concern of the
IDC mission; however, the DACS
makes no determination of data qual-
ity. Any data that are available shall
be processed.

DACS does not consider data quality
as a criteria for interval creation.

TABLE 14: TRACEABILITY OF CSCI EXTERNAL INTERFACE
REQUIREMENTS (CONTINUED)

Requirement How Fulfilled
163

i o n C o n t r o l S y s t e m (D A C S)

1

164

▼

Chapter 5:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
46 The DACS shall interface with the
Interactive Processing programs
through a message passing API. The
DACS shall provide this interface as a
library for use by the developers of
the Interactive Processing programs.
The library shall contain entry points
to allow processes to register, sub-
scribe, unregister, send, poll, receive,
replay and delete messages. The
DACS shall offer several types of
notification when new messages are
sent to a process. The API is specified
in more detail in the following list.

This requirement is fulfilled by libipc,
except that the ability to replay mes-
sages was not addressed. Message
subscription is limited to broadcasts
to the dman client upon any message
send and receive. The message poll-
ing implementation was changed due
to a problem with Tuxedo “unsolic-
ited message” handling. The problem
required heavier weight polling,
although the increased polling time
was well within the relatively light
message timing requirements. The
change requires querying the queue
to see if a new message has been
received. The original implementation
relied upon relatively light-weight
broadcasts that were sent by libipc to
the receiving client (the client that
was being sent the message). Solicit-
ing broadcast traffic is lighter weight
than actually checking the receive
queue.

46.1 register–connect to messaging sys-
tem; arguments specify logical name
and physical location of process;
method of notification for waiting
messages

This requirement is fulfilled via the
ipc_attach() libipc API call. The phys-
ical location of the process is implied
or transparent to the messaging sys-
tem. The method of notification for
waiting messages is not addressed by
this function.

46.2 subscribe–specify types of messages
to read; argument lists message types
to read

This requirement is fulfilled specifi-
cally for dman where libipc broad-
casts to dman upon any message
send and receive among clients with
the interactive session. A general sub-
scribe mechanism is not provided by
libipc and is apparently not required.
However, Tuxedo supports general
publish-subscribe messaging.

TABLE 14: TRACEABILITY OF CSCI EXTERNAL INTERFACE
REQUIREMENTS (CONTINUED)

Requirement How Fulfilled
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Requirements
46.3 unregister–disconnect from messag-
ing system; argument indicates
whether to keep or discard unread
messages

This requirement is fulfilled via the
ipc_detach() libipc API call, although
there is no mechanism to direct dis-
carding of unread messages by this
function.

46.4 send–send a message to another pro-
cess by logical name; arguments
specify message type, message data,
and return address of sender

This requirement is fulfilled via the
ipc_send() libipc API call.

46.5 poll–request empty/non-empty sta-
tus of incoming message queue

This requirement is fulfilled via the
ipc_pending() libipc API call.

46.6 receive–receive a message; argument
specifies message types to read

This requirement is fulfilled via the
ipc_receive() libipc API call.

46.7 delete–delete messages from queue;
argument specifies most recent or all
messages

This requirement is fulfilled via the
ipc_purge() libipc API call.

TABLE 14: TRACEABILITY OF CSCI EXTERNAL INTERFACE
REQUIREMENTS (CONTINUED)

Requirement How Fulfilled
165

i o n C o n t r o l S y s t e m (D A C S)

1

166

▼

Chapter 5:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
47 The DACS shall offer three types of
notification of new messages: none,
callback invocation, or an interrupt.
The type shall be chosen by a process
when it registers. With none, the pro-
cess shall call the poll function to
check on message availability. With
callback invocation, the process shall
register a callback procedure to be
executed when a message arrives.
With an interrupt, the process shall
rely on the interrupt (such as activity
on a UNIX file descriptor) to indicate
when a message is waiting.

Two of the three types of notification
are fulfilled although the second type
is fulfilled in a modified form. Mes-
sage notification type “none” is ful-
filled via explicit calls to the
ipc_receive() libipc API call. Message
notification type “callback” is fulfilled
via the ipc_add_xcallback() libipc API
call, except that the registered call-
back or handler function is called
every time. The reason for the
change is described in requirement
46. The handler function invokes
ipc_receive() to check a new mes-
sage. The handler function is called as
part of an X11 timer event callback,
which is currently configured to hap-
pen every 1/2 second unless the cli-
ent application cannot be presently
interrupted (for example, during a
database submit). Message notifica-
tion type “interrupt” is not sup-
ported, and this feature currently is
not needed.

48 The DACS shall interface with the
UNIX operating system to start Auto-
matic Processing programs and wait
on the termination of these pro-
grams. Processes started by the DACS
shall inherit the system privileges of
the DACS, including the process
group, environment, and file system
permissions.

This requirement is fulfilled by tux-
shell.

TABLE 14: TRACEABILITY OF CSCI EXTERNAL INTERFACE
REQUIREMENTS (CONTINUED)

Requirement How Fulfilled
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Requirements
49 The DACS shall collect the exit or
abnormal termination status of pro-
cesses it starts. The exit status shall be
used to determine success or failure
of the Automatic Processing pro-
gram. Processes shall use a defined
set of exit codes to indicate various
levels of success and another set of
codes to indicate different types of
failure.

This requirement is fulfilled by tux-
shell.

50 The DACS shall interface with an
operator or operators. The DACS
shall provide monitoring displays and
control interfaces. The monitoring
displays shall provide system moni-
toring for computer status, process
status, workflow status, and the mes-
sage passing service. (The informa-
tion presented with each monitoring
display is specified in “System Moni-
toring” on page 133.) The control
interface shall enable the operator to
take actions on the DACS. The con-
trol interface supports the functions
listed in the following subparagraphs.

This requirement is fulfilled by the
tuxpad scripts, WorkFlow, and the
dman client.

50.1 The DACS control interface shall
allow selection from among the auto-
matic processing modes listed in
Table 6 on page 127.

This requirement is fulfilled by the
tuxpad scripts tuxpad and
schedule_it. The processing modes
are defined in requirements 1–7.

TABLE 14: TRACEABILITY OF CSCI EXTERNAL INTERFACE
REQUIREMENTS (CONTINUED)

Requirement How Fulfilled
167

i o n C o n t r o l S y s t e m (D A C S)

1

168

▼

Chapter 5:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
50.2 The DACS control interface shall
allow run-time reconfiguration of the
host computer network. Reconfigura-
tion may take the form of added,
deleted, or upgraded workstations.
The DACS shall allow an operator to
dynamically identify the available
workstations. When a workstation is
removed from service, the DACS shall
migrate all processes on that worksta-
tion to other workstations. The time
allowed for migration shall be the
upper run-time limit for the Auto-
matic Processing programs. In other
words, running programs shall be
allowed to complete before the
migration occurs.

Run-time host and server migration is
supported by the DACS and is acces-
sible via tuxpad. Run-time addition of
a workstation is supported if the
workstation was defined in the
ubbconfig file. Presumably the
workstation is defined but is “dor-
mant” until an operator decides to
migrate or initiate processing on the
machine. Unconfigured workstations
cannot be added during run-time.
(Tuxedo supports this feature, but the
DACS does not currently use it).

50.3 The DACS control interface shall
allow run-time reconfiguration of the
DACS programs. Reconfiguration
shall allow an increase, decrease, or
migration of Automatic Processing
programs.

Run-time server migration is sup-
ported by the DACS and is accessible
via tuxpad.

50.4 The DACS control interface shall
allow access to the availability man-
ager for starting or stopping individ-
ual DACS and Automatic Processing
programs.

This requirement is fulfilled via tux-
pad.

50.5 The DACS control interface shall
allow manual processing and repro-
cessing of data elements through
their respective sequences.

This requirement is fulfilled via the
interval reprocessing feature of
WorkFlow, which is based on the
ProcessInterval script and SendMes-
sage client.

TABLE 14: TRACEABILITY OF CSCI EXTERNAL INTERFACE
REQUIREMENTS (CONTINUED)

Requirement How Fulfilled
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Requirements

51 The DACS shall acquire time from a
global time service.

This requirement is not met. The
DACS relies upon external support for
clock synchronization (for example,
system cron jobs, which attempt to
synchronize all machines clocks on
the LAN once per day). Or, the DACS
relies on the database server for a sin-
gle source of time. However, the
DACS uses both methods for time
synchronization without a consistent
criterion.

TABLE 15: TRACEABILITY OF CSCI INTERNAL DATA REQUIREMENTS

Requirement How Fulfilled

52 The DACS shall maintain a collection
of intervals (data element references)
and shall update the status of inter-
vals in the interval database table.

This requirement is fulfilled by various
DACS elements including the data
monitor servers, tuxshell, and
dbserver.

TABLE 16: TRACEABILITY OF SYSTEM REQUIREMENTS

Requirement How Fulfilled

53 The implementation of the DACS
shall allow for configuration data of
the number and type of computers
on the network, and the number of
automated processes of each type
allowed to execute on each computer
type.

This requirement is fulfilled by the
ubbconfig file and parameter files
for each DACS application.

TABLE 14: TRACEABILITY OF CSCI EXTERNAL INTERFACE
REQUIREMENTS (CONTINUED)

Requirement How Fulfilled
169

i o n C o n t r o l S y s t e m (D A C S)

1

170

▼

Chapter 5:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
54 Only authorized users shall be
allowed to initiate processing. Unau-
thorized requests shall be rejected
and logged. The DACS shall require
passwords from authorized users at
login.

Administration of the DACS, typically
carried out through tuxpad, is limited
to the “Tuxedo” user or the user that
owns the DACS processes defined in
the ubbconfig file. Password
authentication is implicitly handled by
the operating system. The DACS has
not implemented any authentication
specific to the CSCI (Tuxedo offers
various options to do so if needed).

55 The DACS shall operate in the IDC
environment.

Fulfilled.

56 The DACS shall operate in the same
hardware environment as the IDC.

Fulfilled.

57 The DACS requires extensive data-
base queries to detect new wfdisc
records. These queries will impact the
database server. Otherwise, the
DACS shall consume negligible hard-
ware resources.

This requirement has been fulfilled.
Even though the Tuxedo-based
DACS manifests in a large number of
processes spread across the LAN, the
processes consume a relatively small
amount of computing resources. The
expense of the wfdisc queries has
been partially mitigated through the
introduction of database triggers. The
database triggers update wfdisc end
time values in an efficient manner
saving similar queries, which would
otherwise be submitted against the
wfdisc table.

58 Similarly, the DACS must share the
same software environment as the
rest of the IDC. While this environ-
ment is not exactly defined at this
time, it is likely to include:

Solaris 7 or 8

ORACLE 8.x

X Window System X11R5 or later

TCP/IP network utilities

Fulfilled.

TABLE 16: TRACEABILITY OF SYSTEM REQUIREMENTS (CONTINUED)

Requirement How Fulfilled
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Requirements
59 The DACS shall adhere to ANSI C,
POSIX, and SQL standards.

Fulfilled.

60 The DACS shall use common UNIX
utilities (for example, cron, sendmail)
and system calls (for example, sock-
ets, exec) whenever possible, to take
advantage of widespread features
that shall aid portability. Vendor-spe-
cific UNIX utilities shall be isolated
into separate modules for identifica-
tion and easy replacement should the
need arise.

The DACS limits vendor-specific
products to Tuxedo. The DACS
makes use of public domain software
such as Perl/Tk (Perl with Tk GUI
bindings). As such, the requirement is
fulfilled.

61 The DACS shall implement middle-
ware layers to isolate third-party soft-
ware products and protocol
standards.

This requirement is fulfilled to a rea-
sonable degree. The interactive mes-
saging library, libipc, was
implemented with the requirement in
mind in that the Tuxedo layer is sepa-
rated from the general messaging API
wherever possible. For Automatic
Processing, layering is, in certain
cases, challenging because deploy-
ment of a Tuxedo application such as
the DACS is at the system and user
configuration levels.

62 The DACS shall implement the func-
tions of workflow management,
availability management, inter-pro-
cess communications, and system
monitoring as separate stand-alone
programs.

This requirement is fulfilled to a rea-
sonable degree. WorkFlow manage-
ment is implemented by several
cooperating programs. Availability
management and system monitoring
is handled, in part, by Tuxedo, which
relies on a distributed set of servers to
carry out this function. Inter-process
communications is handled by a vari-
ety of programs, libraries, and system
resources such as qspace disk files.

TABLE 16: TRACEABILITY OF SYSTEM REQUIREMENTS (CONTINUED)

Requirement How Fulfilled
171

i o n C o n t r o l S y s t e m (D A C S)

1

172

▼

Chapter 5:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
63 The DACS shall use COTS for internal
components where practical. Practical
in this situation means where there is
a strong functional overlap between
the DACS requirements and COTS
capabilities.

This requirement is fulfilled by Tux-
edo.

64 The DACS shall be designed to scale
to a system twice as large as the ini-
tial IDC requirements without a
noticeable degradation in time to
perform the DACS functions.

This requirement is fulfilled by Tux-
edo.

65 The DACS requires a capable UNIX
system administrator for installation
of the DACS components and sys-
tem-level debugging of problems
such as file system full, insufficient
UNIX privileges, and network con-
nectivity problems.

This requirement is fulfilled, although
the DACS has matured to the point
that a UNIX system administrator is
not required for the majority of the
DACS installation task.

66 The DACS shall be delivered with a
System Users Manual that explains
the operations and run-time options
of the DACS. The manual shall also
specify all configuration parameters
of the DACS. The DACS shall only
require a user-level prior understand-
ing of UNIX and Motif.

This requirement is fulfilled (see
[IDC6.5.2Rev0.1]).

67 The DACS shall be delivered electron-
ically.

This requirement is fulfilled.

TABLE 16: TRACEABILITY OF SYSTEM REQUIREMENTS (CONTINUED)

Requirement How Fulfilled
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Requirements
68 The DACS capabilities of workflow
management and message passing
are ranked equally high in terms of
criticality. These capabilities shall
function in the event of system fail-
ures. The functions of availability
management and system monitoring
rank next in order of importance. The
DACS shall continue to perform the
first set of functions even if the sec-
ond set of functions are unavailable
for any reason.

This requirement is fulfilled via the
DACS’ ability to survive most failure
conditions as discussed previously.

TABLE 16: TRACEABILITY OF SYSTEM REQUIREMENTS (CONTINUED)

Requirement How Fulfilled
173

i o n C o n t r o l S y s t e m (D A C S)

1

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Refe rences

The following sources supplement or are referenced in this document:

[And96] Andrade, J. M., Carges, M. T., Dwyer, T. J., and Felts, S. D., The
TUXEDO System: Software for Constructing and Managing
Distributed Business Applications, Addison-Wesley Publishing
Company, 1996.

[BEA96] BEA Systems, Inc., BEA TUXEDO Reference Manual, 1996.

[DOD94a] Department of Defense, “Software Design Description,”
Military Standard Software Development and Documentation,
MIL-STD-498, 1994.

[DOD94b] Department of Defense, “Software Requirements
Specification,” Military Standard Software Development and
Documentation, MIL-STD-498, 1994.

[Gan79] Gane, C., and Sarson, T., Structured Systems Analysis: Tools and
Techniques, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979.

[IDC5.1.1Rev2] Science Applications International Corporation, Veridian
Pacific-Sierra Research, Database Schema, Revision 2,
SAIC-00/3057, PSR-00/TN2830, 2000.

[IDC6.5.1] Science Applications International Corporation, Interactive
Analysis Subsystem Software User Manual, SAIC-01/3001,
2001.

[IDC6.5.2Rev0.1] Science Applications International Corporation, Distributed
Application Control System (DACS) Software User Manual,
Revision 0.1, SAIC-00/3038, 2000.
i o n C o n t r o l S y s t e m (D A C S)

1 175

S o f t w a r e
I D C D O C U M E N T A T I O N

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0
Glossa ry

A

admin server

Tuxedo server that provides interprocess
communication and maintains the dis-
tributed processing state across all
machines in the application. Admin serv-
ers are provided as part of the Tuxedo
distribution.

AEQ

Anomalous Event Qualifier.

application (DACS, Tuxedo)

System of cooperating processes config-
ured for a specific function to be run in a
distributed fashion by Tuxedo. Also used
in a more general sense to refer to all
objects included in one particular
ubbconfig file (machines, groups,
servers) and associated shared memory
resources, qspaces, and clients.

application server

Server that provides functionality to the
application.

architecture

Organizational structure of a system or
component.

architectural design

Collection of hardware and software
components and their interfaces to
establish the framework for the devel-
opment of a computer system.

archive

Single file formed from multiple inde-
pendent files for storage and backup
purposes. Often compressed and
encrypted.

ARS

Analyst Review Station. This application
provides tools for a human analyst to
refine and improve the event bulletin by
interactive analysis.

ASCII

American Standard Code for Informa-
tion Interchange. Standard, unformatted
256-character set of letters and num-
bers.

B

backup (component)

System component that is provided
redundantly. Backups exist on the
machine, group, server, and services
level. Appropriate backups are config-
ured to seamlessly take over processing
as soon as a primary system component
fails or becomes unavailable.
G1

i o n C o n t r o l S y s t e m (D A C S)

1

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G2
beam

(1) Waveform created from array station
elements that are sequentially summed
after being steered to the direction of a
specified azimuth and slowness. (2) Any
derived waveform (for example, a fil-
tered waveform).

Beamer

Application that prepares event beams
for the notify process and for later analy-
sis.

boot

Action of starting a server process as a
memory-resident task. Booting the
whole application is equivalent to boot-
ing all specified server processes (admin
servers first, application servers second).

bulletin

Chronological listing of event origins
spanning an interval of time. Often, the
specification of each origin or event is
accompanied by the event’s arrivals and
sometimes with the event’s waveforms.

C

CCB

Configuration Control Board.

CDE

Common Desktop Environment.

child process

UNIX process created by the fork rou-
tine. The child process is a snapshot of
the parent at the time it called fork.

click

Select an element on the screen by posi-
tioning the pointer over the element,
then pressing and immediately releasing
the mouse button.

client

Software module that gathers and pre-
sents data to an application; it generates
requests for services and receives replies.
This term can also be used to indicate
the requesting role that a software mod-
ule assumes by either a client or server
process.

command

Expression that can be input to a com-
puter system to initiate an action or
affect the execution of a computer pro-
gram.

Common Desktop Environment

Desktop graphical user interface that
comes with SUN Solaris.

component

One of the parts of a system; also
referred to as a module or unit.

Computer Software Component

Functionally or logically distinct part of a
computer software configuration item,
typically an aggregate of two or more
software units.

Computer Software Configuration Item

Aggregation of software that is desig-
nated for configuration management
and treated as a single entity in the con-
figuration management process.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Glossary

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0
configuration

(1) (hardware) Arrangement of a com-
puter system or components as defined
by the number, nature, and interconnec-
tion of its parts. (2) (software) Set of
adjustable parameters, usually stored in
files, which control the behavior of appli-
cations at run time.

configuration item

Aggregation of hardware, software, or
both treated as a single entity in the con-
figuration management process.

control flow

Sequence in which operations are per-
formed during the execution of a com-
puter program.

COTS

Commercial-Off-the-Shelf; terminology
that designates products such as hard-
ware or software that can be acquired
from existing inventory and used with-
out modification.

crash

Sudden and complete failure of a com-
puter system or component.

CSC

Computer Software Component.

CSCI

Computer Software Configuration Item.

D

DACS

Distributed Application Control System.
This software supports inter-application
message passing and process manage-
ment.

DACS machines

Machines on a Local Area Network
(LAN) that are explicitly named in the
*MACHINES and *NETWORK sections of
the ubbconfig file. Each machine is
given a logical reference (see LMID) to
associate with its physical name.

daemon

Executable program that runs continu-
ously without operator intervention.
Usually, the system starts daemons dur-
ing initialization. (Example: cron).

data flow

Sequence in which data are transferred,
used, and transformed during the execu-
tion of a computer program.

data monitors

Class of application servers that monitor
data streams and data availability, form
data intervals, and initiate a sequence of
general processing servers when a suffi-
ciently large amount of unprocessed
data are found.

dequeue

Remove a message from a Tuxedo
queue.
G3

i o n C o n t r o l S y s t e m (D A C S)

1

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G4
detection

Probable signal that has been automati-
cally detected by the Detection and Fea-
ture Extraction (DFX) software.

DFX

Detection and Feature Extraction. DFX is
a programming environment that exe-
cutes applications written in Scheme
(known as DFX applications).

diagnostic

Pertaining to the detection and isolation
of faults or failures.

disk loop

Storage device that continuously stores
new waveform data while simulta-
neously deleting the oldest data on the
device.

DM

Data monitor.

dman

Distributed Application Manager. This
software element of the DACS manages
the availability (execution) of processes.

E

enqueue

Place a message in a Tuxedo queue.

F

failure

Inability of a system or component to
perform its required functions within
specified performance requirements.

forwarding agent

Application server TMQFORWARD that
acts as an intermediary between a mes-
sage queue on disk and a group of pro-
cessing servers advertising a service. The
forwarding agent uses transactions to
manage and control its forwarding func-
tion.

G

GA

Global Association application. GA asso-
ciates S/H/I phases to events.

generalized processing server

DACS application server (tuxshell) that is
the interface between the DACS and the
automatic processing system. It executes
application programs as child processes.

GUI

Graphical User Interface

H

host

Machine on a network that provides a
service or information to other comput-
ers. Every networked computer has a
hostname by which it is known on the
network.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Glossary

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0
hydroacoustic

Pertaining to sound in the ocean.

I

IDC

International Data Centre.

infrastructure

Foundation and essential elements of a
system or plan of operation.

instance

Running computer program. An individ-
ual program may have multiple instances
on one or more host computers.

IPC

Interprocess communication. The mes-
saging system by which applications
communicate with each other through
libipc common library functions. See
tuxshell.

J

Julian date

Increasing count of the number of days
since an arbitrary starting date.

L

LAN

Local Area Network.

launch

Initiate, spawn, execute, or call a soft-
ware program or analysis tool.

LMID

Logical machine identifier: the logical
reference to a machine used by a Tuxedo
application. LMIDs can be descriptive,
but they should not be the same as the
UNIX hostname of the machine.

M

Map

Application for displaying S/H/I events,
stations, and other information on geo-
graphical maps.

Master (machine)

Machine that is designated to be the
controller of a DACS (Tuxedo) applica-
tion. In the IDC application the custom-
ary logical machine identifier (LMID) of
the Master is THOST.

message interval

Entry in a Tuxedo queue within the
qspace referring to rows in the interval or
request database tables. The DACS pro-
grams ensure that interval tables and
qspace remain in synchronization at all
times.

message queue

Repository for data intervals that cannot
be processed immediately. Queues con-
tain references to the data while the data
remains on disk.
G5

i o n C o n t r o l S y s t e m (D A C S)

1

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G6
N

NFS

Network File System (Sun Microsys-
tems). Protocol that enables clients to
mount remote directories onto their own
local filesystems.

O

online

Logged onto a network or having
unspecified access to the Internet.

ORACLE

Vendor of the database management
system used at the PIDC and IDC.

P

parameter (par) file

ASCII file containing values for parame-
ters of a program. Par files are used to
replace command line arguments. The
files are formatted as a list of [token =
value] strings.

partitioned

State in which a machine can no longer
be accessed from other DACS machines
via IPC resources BRIDGE and BBL.

PIDC

Prototype International Data Centre.

pipeline

1) Flow of data at the IDC from the
receipt of communications to the final
automated processed data before ana-

lyst review. 2) Sequence of IDC pro-
cesses controlled by the DACS that
either produce a specific product (such
as a Standard Event List) or perform a
general task (such as station processing).

PS

Processing server.

Q

qspace

Set of message queues grouped under a
logical name. The IDC application has a
primary and a backup qspace. The pri-
mary qspace customarily resides on the
machine with logical reference (LMID)
QHOST.

R

real time

Actual time during which something
takes place.

run

(1) Single, usually continuous, execution
of a computer program. (2) To execute a
computer program.

S

SAIC

Science Applications International Cor-
poration.
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Glossary

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0
Scheme

Dialect of the Lisp programming lan-
guage that is used to configure some
IDC software.

script

Small executable program, written with
UNIX and other related commands, that
does not need to be compiled.

SEL1

Standard Event List 1; S/H/I bulletin cre-
ated by total automatic analysis of con-
tinuous timeseries data. Typically, the list
runs one hour behind real time.

SEL2

Standard Event List 2; S/H/I bulletin cre-
ated by totally automatic analysis of
both continuous data and segments of
data specifically down-loaded from sta-
tions of the auxiliary seismic network.
Typically, the list runs five hours behind
real time.

SEL3

Standard Event List 3; S/H/I bulletin cre-
ated by totally automatic analysis of
both continuous data and segments of
data specifically down-loaded from sta-
tions of the auxiliary seismic network.
Typically, the list runs 12 hours behind
real time.

server

Software module that accepts requests
from clients and other servers and
returns replies.

server (group)

Set of servers that have been assigned a
common GROUPNO parameter in the
ubbconfig file. All servers in one server
group must run on the same logical
machine (LMID). Servers in a group
often advertise equivalent or logically
related services.

service

Action performed by an application
server. The server is said to be advertis-
ing that service. A server may advertise
several services (multiple personalities),
and several servers may advertise the
same service (replicated servers).

shutdown

Action of terminating a server process as
a memory-resident task. Shutting down
the whole application is equivalent to
terminating all specified server pro-
cesses (admin servers first, application
servers second) in the reverse order that
they were booted.

Solaris

Name of the operating system used on
Sun Microsystems hardware.

SRVID

Server identifier: integer between 1 and
29999 uniquely referring to a particular
server. The SRVID is used in the
ubbconfig file and with Tuxedo
administrative utilities to refer to this
server.

StaPro

Station Processing application for S/H/I
data.
G7

i o n C o n t r o l S y s t e m (D A C S)

1

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G8
station

Collection of one or more monitoring
instruments. Stations can have either
one sensor location (for example, BGCA)
or a spatially distributed array of sensors
(for example, ASAR).

subsystem

Secondary or subordinate system within
the larger system.

T

TI

Class of DACS servers that form time
intervals by station sensor (for example,
tis_server).

TMS

Transaction manager server.

transaction

Set of operations that is treated as a unit.
If one of the operations fails, the whole
transaction is considered failed and the
system is “rolled back” to its pre-trans-
action processing state.

Tuxedo

Transactions for UNIX Extended for Dis-
tributed Operations.

tuxpad

DACS client that provides a graphical
user interface for common Tuxedo
administrative services.

tuxshell

Process in the Distributed Processing
CSCI used to execute and manage appli-
cations. See IPC.

U

ubbconfig file

Human readable file containing all of the
Tuxedo configuration information for a
single DACS application.

UID

User identifier.

UNIX

Trade name of the operating system
used by the Sun workstations.

V

version

Initial release or re-release of a computer
software component.

W

waveform

Time-domain signal data from a sensor
(the voltage output) where the voltage
has been converted to a digital count
(which is monotonic with the amplitude
of the stimulus to which the sensor
responds).
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Glossary

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0
Web

World Wide Web; a graphics-intensive
environment running on top of the
Internet.

WorkFlow

Software that displays the progress of
automated processing systems.

workstation

High-end, powerful desktop computer
preferred for graphics and usually net-
worked.
G9

i o n C o n t r o l S y s t e m (D A C S)

1

S o f t w a r e
I D C D O C U M E N T A T I O N

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0
I ndex

A

admin server vii, 42
affiliation 27, 121, 122
application instances 5
application server vii, 43

TMQFORWARD 44
TMQUEUE 44
TMS 43
TMS_QM 43
TMSYSEVT 44
TMUSREVT 44

Automatic Processing 5
conceptual data flow 14
utilities 32

availability management requirements 128
traceability 148

B

backup (component) viii
backup concept 23
BBL 42
birdie 100

control 109
error states 109
I/O 105
interfaces 109

boot viii
BRIDGE 19, 42

BSBRIDGE 42
bulletin board 42

C

capacity mapping 24
catchup capability 24
client viii
conventions

data flow symbols v
entity-relationship symbols vi
typographical vii

CSCI external interface requirements 137
traceability 161

CSCI internal data requirements 142
traceability 169

D

DACS
filesystem use 20
interface with other IDC systems 34
machines viii
operational modes 127
operator interface 35

data flow symbols v
data monitors viii

ticron_server 63, 64, 67
tiseg_server 61

data monitor servers 54
DBBL 42
dbserver 31, 32, 51, 89, 91

control 92
error states 93
I/O 91
interfaces 92
I1

i o n C o n t r o l S y s t e m (D A C S)

1

▼ Index

S o f t w a r e
I D C D O C U M E N T A T I O N

I2
dequeue viii
distinguished bulletin board 43
distributed processing 8, 23
distribution objectives 24
dman 100

control 109
error states 109
I/O 105
interfaces 109

E

enqueue viii
entity-relationship symbols vi

F

forwarding agent viii, 23
functional requirements 128

traceability 148, 150, 153, 156, 158

G

generalized processing server (tuxshell) viii
general requirements 126

traceability 144

H

hardware requirements 11
host 21

I

instance viii
Interactive Processing 6, 32

conceptual data flow 16
interval ix

interval 27, 31, 59, 121, 122
interval_router 30, 32, 49, 90

control 92
error states 93
I/O 91
interfaces 92

IPC resources 45

L

lastid 27, 121, 122
libgdi 119
libipc 19, 100

control 109
error states 109
I/O 105
interfaces 109

libraries, global 18
listener daemons (tlisten and tagent) 38
LMID ix
load balancing 24
load limitation 24
log files 20

M

Master ix
message ix
message passing requirements 129

traceability 150
message queue ix, 21, 45
middleware 7
minimization of network traffic 24
msg_window 110

control 118
error states 119
I/O 115
interfaces 118
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Index

D i s t r i b u t e d A p p l i c a t

I D C - 7 . 3 . 1 J u n e 2 0 0
N

network processing 63, 64, 67

O

operate_admin 110
control 118
error states 119
I/O 115
interfaces 118

operational modes 127

P

partitioned ix
pipeline

description 25
schematic 26

ProcessInterval 31, 93

Q

qinfo 110
control 118
error states 119
I/O 115
interfaces 118

qmadmin 46
qspace ix, 46
queues 46
queue space 46

R

recycler_router 90
recycler_server 32, 51

control 92
error states 93

I/O 92
interfaces 92

reliability requirements 134
traceability 158

request 28, 31, 68, 75, 121, 122
requirements

COTS software 11
CSCI external interface 137
CSCI internal data 142
functional 128
general 126
hardware 11
system 142

requirements traceability 144
rollback 22

S

schedclient 31, 49, 77
control 81
error states 82
I/O 78
interfaces 82

schedule_it 110
control 118
error states 119
I/O 115
interfaces 118

scheduler 30, 49, 77
control 81
error states 82
I/O 78
interfaces 82

semaphores 45
SendMessage 31, 93
server 21
server group ix
service ix, 21
shared memory 45
single-point-of-failure 24
software requirements 11
SRVID x
I3

i o n C o n t r o l S y s t e m (D A C S)

1

▼ Index

S o f t w a r e
I D C D O C U M E N T A T I O N

I4
system monitoring requirements 133
traceability 156

system requirements 142
traceability 169

T

tagent 42
technical terms vii
ticron_server 30, 54, 63, 64, 67

I/O 71
timestamp 28, 75, 121, 123
tin_server 30, 54

I/O 72
tis_server 30, 49, 57

I/O 69
tis_server,tiseg_server 54
tiseg_server 30, 61

I/O 70
tlisten 38
tmadmin 46
tmloadcf 46
TMQFORWARD 23, 31, 44, 51
TMQUEUE 44
TMS 43
TMS_QM 43
TMSYSEVT 44
tmunloadcf 46
TMUSREVT 44
transaction x

description 22
transactional resource managers 9
transaction logs 45
tuxconfig 45
tuxpad x, 32, 49, 110

control 118
error states 119
I/O 115
interfaces 118

tuxshell 31, 83
control 88
error states 88

I/O 86
interfaces 88

typographical conventions vii

U

ubbconfig 20, 45
file x

user logs 45
utility programs (tmadmin, qmadmin) 46

W

WaveGet_server 30, 54
I/O 74

wfdisc 28, 59, 123
WorkFlow 31, 49, 93

control 99
error states 100
I/O 96
interfaces 99

workflow management requirements 131
traceability 153
 J u n e 2 0 0 1 I D C - 7 . 3 . 1

D i s t r i b u t e d A p p l i c a t i o n C o n t r o l S y s t e m (D A C S)

	Cover Page
	Notice Page
	Contents
	Figures
	Tables
	About this Document
	Purpose
	Scope
	Audience
	Related Information
	Using this Document
	Conventions

	Chapter 1: Overview
	Introduction
	Functionality
	Identification
	Status of Development
	Background and History
	Operating Environment
	Hardware
	Commercial-Off-The-Shelf Software

	Chapter 2: Architectural Design
	Conceptual Design
	Design Decisions
	Programming Language
	Global Libraries
	Database
	Interprocess Communication (IPC)
	Filesystem
	UNIX Mail
	FTP
	Web
	Design Model
	Distribution and Backup Concept
	Pipelines
	Database Schema Overview

	Functional Description
	Distributed Process Monitoring, Reliable Queueing, and Transactions
	Data Monitoring
	System Scheduling
	Pipeline Processing
	Workflow Monitoring
	Automatic Processing Utilities
	Operator Console
	Interactive Processing

	Interface Design
	Interface with Other IDC Systems
	Interface with External Users
	Interface with Operators

	Chapter 3: Tuxedo Components and Concepts
	Processing Units
	Tuxedo Components of DACS
	Listener Daemons (tlisten, tagent)
	Administrative Servers
	Application Servers
	IPC Resources
	Special Files
	Utility Programs

	Chapter 4: Detailed Design
	Data Flow Model
	Processing Units
	Data Monitor Servers
	scheduler/schedclient
	tuxshell
	dbserver, interval_router, and recycler_server
	WorkFlow, SendMessage, and ProcessInterval
	libipc, dman, and birdie
	tuxpad, operate_admin, schedule_it, and msg_window

	Database Description
	Database Design
	Database Schema

	Chapter 5: Requirements
	Introduction
	General Requirements
	Functional Requirements
	Availability Management
	Message Passing
	Workflow Management
	System Monitoring
	Reliability

	CSCI External Interface Requirements
	CSCI Internal Data Requirements
	System Requirements
	Requirements Traceability

	References
	Glossary
	Index
	
	Print...

